期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于知识增强的深度新闻推荐网络
被引量:
6
1
作者
刘琼昕
宋祥
覃明帅
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2021年第3期286-294,共9页
在新闻推荐场景下,传统的基于文本特征的新闻推荐模型只考虑了词的共现关系,无法捕获词语的隐含词义和关联知识;而基于深度学习的推荐模型在融合知识图谱信息中仅仅考虑实体的信息,忽略了远距离实体之间的联系,造成实体之间的关联信息...
在新闻推荐场景下,传统的基于文本特征的新闻推荐模型只考虑了词的共现关系,无法捕获词语的隐含词义和关联知识;而基于深度学习的推荐模型在融合知识图谱信息中仅仅考虑实体的信息,忽略了远距离实体之间的联系,造成实体之间的关联信息和深层次语义联系的缺失.针对该问题提出了一种基于知识增强的深度新闻推荐网络(deep knowledge-enhanced network,DKEN),利用长短期记忆网络提取知识图谱中的实体路径特征,补充到注意力网络中,然后针对不同的候选新闻动态地构建用户的特征.实验表明该实体路径信息能提高模型的效果,在F1指标上提升大约1%.
展开更多
关键词
知识增强
深度新闻推荐网络
知识图谱
实体路径特征
下载PDF
职称材料
题名
基于知识增强的深度新闻推荐网络
被引量:
6
1
作者
刘琼昕
宋祥
覃明帅
机构
北京理工大学计算机学院
北京市海量语言信息处理与云计算应用工程技术研究中心
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2021年第3期286-294,共9页
文摘
在新闻推荐场景下,传统的基于文本特征的新闻推荐模型只考虑了词的共现关系,无法捕获词语的隐含词义和关联知识;而基于深度学习的推荐模型在融合知识图谱信息中仅仅考虑实体的信息,忽略了远距离实体之间的联系,造成实体之间的关联信息和深层次语义联系的缺失.针对该问题提出了一种基于知识增强的深度新闻推荐网络(deep knowledge-enhanced network,DKEN),利用长短期记忆网络提取知识图谱中的实体路径特征,补充到注意力网络中,然后针对不同的候选新闻动态地构建用户的特征.实验表明该实体路径信息能提高模型的效果,在F1指标上提升大约1%.
关键词
知识增强
深度新闻推荐网络
知识图谱
实体路径特征
Keywords
knowledge enhancement
deep news recommendation network
knowledge graph
entity path feature
分类号
G202 [文化科学—传播学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于知识增强的深度新闻推荐网络
刘琼昕
宋祥
覃明帅
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2021
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部