期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Cantor K分集的性质及其应用
1
作者 蒋君 吴志远 徐树立 《武汉科技大学学报》 CAS 2003年第1期99-101,104,共4页
给出CantorK分集的定义及性质,同时给出CantorK分集在实函分析中的几个简单应用。
关键词 CantorK分集 实函分析 集合论 疏朗集 实数集 疏朗完备集 L可测集 连续统
下载PDF
Experimental analysis and application of sparsity constrained deconvolution 被引量:7
2
作者 李国发 秦德海 +2 位作者 彭更新 岳英 翟桐立 《Applied Geophysics》 SCIE CSCD 2013年第2期191-200,236,共11页
Sparsity constrained deconvolution can improve the resolution of band-limited seismic data compared to conventional deconvolution. However, such deconvolution methods result in nonunique solutions and suppress weak re... Sparsity constrained deconvolution can improve the resolution of band-limited seismic data compared to conventional deconvolution. However, such deconvolution methods result in nonunique solutions and suppress weak reflections. The Cauchy function, modified Cauchy function, and Huber function are commonly used constraint criteria in sparse deconvolution. We used numerical experiments to analyze the ability of sparsity constrained deconvolution to restore reflectivity sequences and protect weak reflections under different constraint criteria. The experimental results demonstrate that the performance of sparsity constrained deconvolution depends on the agreement between the constraint criteria and the probability distribution of the reflectivity sequences; furthermore, the modified Cauchy- constrained criterion protects the weak reflections better than the other criteria. Based on the model experiments, the probability distribution of the reflectivity sequences of carbonate and clastic formations is statistically analyzed by using well-logging data and then the modified Cauchy-constrained deconvolution is applied to real seismic data much improving the resolution. 展开更多
关键词 sparse deconvolution constraint criterion modified Cauchy criterion resolution
下载PDF
Fundamental Locally Solid Riesz Spaces
3
作者 陈金喜 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第3期328-332,共5页
In this paper we focus ourselves on the positive cone of the locally solid Riesz spaces to characterize the fundamentality. From one example the article indicates that the fundamentality of the locally solid Riesz spa... In this paper we focus ourselves on the positive cone of the locally solid Riesz spaces to characterize the fundamentality. From one example the article indicates that the fundamentality of the locally solid Riesz space is independent from the Lebesgue property. 展开更多
关键词 locally solid Riesz space fundamental locally solid Riesz space positive cone
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部