We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars.Our experimental data showed that receding contact angles of the water droplet increased with the decre...We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars.Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation,even though the solid area fractions of the microstructured substrates remained constant.We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures,but also by the initial volume of the water droplet.The measured critical pressure is consistent with the theoretical model,which validated the pressure-induced impalement mechanism for the wetting state transition.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11072126)
文摘We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars.Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation,even though the solid area fractions of the microstructured substrates remained constant.We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures,but also by the initial volume of the water droplet.The measured critical pressure is consistent with the theoretical model,which validated the pressure-induced impalement mechanism for the wetting state transition.