The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, wher...The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.展开更多
We introduce a first-principles density-functional theory,i.e.the finite-difference pseudopotential density- functional theory in real space and the Langevin molecular dynamics annealing technique,to the descriptions ...We introduce a first-principles density-functional theory,i.e.the finite-difference pseudopotential density- functional theory in real space and the Langevin molecular dynamics annealing technique,to the descriptions of structures and some properties of small carbon clusters(C_N,N=2~8).It is shown that the odd-numbered clusters have linear structures and most of the even-numbered clusters prefer cyclic structures.展开更多
Recently a Hybrid Carrier (HC) scheme based on Weighted-type Fractional Fourier Transform (WFRFT) was proposed and developed, which contains Single Carrier (SC) and Multi-Carrier (MC) synergetie transmission. ...Recently a Hybrid Carrier (HC) scheme based on Weighted-type Fractional Fourier Transform (WFRFT) was proposed and developed, which contains Single Carrier (SC) and Multi-Carrier (MC) synergetie transmission. The wide interest is primarily due to its appealing characteristics, such as the robust performances in different types of selective fading channels and a great deal of potential for secure communications. According to the literatures, the HC signal and SC or MC signal probability distributions are different. In particular, some benefits of this HC scheme are brought by the quasi-Gaussian distribution of WFRFT signals. However, until now researchers have only presented statistic properties through computer simulations, and the accurate expressions of signals are not derived yet. In this paper, we derive the accu- rate and rigorously established closed-form expressions of Probability Density Function (PDF) of WFRFT signal real and imaginary parts with a large number of QPSK subcarriers, and this PDF can describe the behavior of data modulated by WFRFT, avoiding the complex computation for extensive computer simulations. Furthermore, the components of PDF expression are described and analyzed, and it is revealed that the tendency of signal quasi-Gaussian changes with the increasing of the parameter a (a in (0,1]). To validate the analytical results, extensive simulations have been conducted, showing a very good match between the analytical results and the real situations. The contribution of this paper may be useful to deduce the closed form expressions of Bit Error Ratio (BER), the Complementary Cumulative Distribution Function (CCDF) of Peak to Average Power Ratio (PAPR), and other analytical studies which adopt the PDF.展开更多
According to the problem of energy consumption in wireless sensor network (WSN),this paper puts forward a routing optimization algorithm with quality of multi-service, using the function of routing optimization with...According to the problem of energy consumption in wireless sensor network (WSN),this paper puts forward a routing optimization algorithm with quality of multi-service, using the function of routing optimization with quality of multi-service and membership function of satisfaction, which integrates the energy consumption of communication and residual and the information of time delay into the membership function of satisfaction to solve the equilibrium factor, so that it can become the optimal routing that balances the network lifetime, transmission delay of data, and node energy consumption of nodes. Simulation experiment shows that adopting the algorithm can make lifecycle of nodes longer and network transmit more data packets at the same time. Experimental results verify the algorithm can effectively balance the network energy, reduce the energy consumption and prolong the network lifetime.展开更多
Spatial pattern and interdependence of different soil and plant parameters were examined in green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari (MAIB), Italy. The study aimed to ...Spatial pattern and interdependence of different soil and plant parameters were examined in green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari (MAIB), Italy. The study aimed to identify the spatial distribution of soil and plant parameters and their relationship at transects scale. The experiment consisted of three transects of 30 m length and 4.2 m width, irrigated with three different salinity levels (1 dSm"1, 3 dSm1, 6 dSml). Soil measurements (electrical conductivity and soil water content) were monitored along each transect in 24 sites, using TDR probe installed vertically at soil surface. Water storage was measured by using Diviner sensor for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same 24 sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Root length Density (RID) and Evapotranspiration fluxes (ET). Soil and plant properties were analyzed using both classical and geostatistical methods which included descriptive statistics, semivariograms and cross-semivariograms. Results indicated that moderate to large spatial variability existed across the field for soil and plant parameters, especially under the 6 dSm1 salinity treatment. A relatively satisfactory fit of the experimental cross-semivariogram was obtained for the 6 dS1, thus indicating similar spatial structures of the pairs of compared variables. By contrast, the experimental cross-semivariograms observed under the 3 dS~ treatment indicated no significant correlation structure between the compared variables. Overall, the results observed in the 3 dSm-1 were not significantly different from those obtained in the 1 dSm-1 transect and suggested a general insensitivity of the crop response to those levels of salinity.展开更多
In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial func...In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial functions with respect to stress and temperature. A series of uniaxial compressive creep experiments are performed at various stress and temperature conditions in order to determine these parameter functions, and then the proposed model is validated by comparison between the predictions and experiments at the other loading conditions. It is shown that very small permanent deformation at low stress and temperature increases rapidly with elevated stress or temperature and the damage may initiate in the stationary stage but mainly develops in the accelerated stage. Compared with the visco-elastoplastic models without damage, the predictions from the proposed model is in better agreement with the experiments, and can better capture the rate-dependency in creep responses of asphalt mastic especially below its softening point of 47 ℃展开更多
Based on the transverse Ising model and using decoupling approximation to the Fermi-type Green's function, we study the phase transition properties of the epitaxial ferroeleetric film with one substrate. A general re...Based on the transverse Ising model and using decoupling approximation to the Fermi-type Green's function, we study the phase transition properties of the epitaxial ferroeleetric film with one substrate. A general recursive equation of the ferroelectric thin film with two n-layer materials is obtained, which enables us to study the phase transition properties for any number layers for epitaxial ferroelectric thin film. With the help of this equation, we analyze the effect of the exchange interaction and the transverse field in the phase diagram, the influence to the polarizations and Curie temperature numerically. The results show that epitaxial ferroelectric film are able to induce a strong increase or decrease of Curie temperature to different exchange interactions and transverse fields within the epitaxial film layers. The theoretical results are in reasonable accordance with experimental data of different ferroelectric thin film.展开更多
The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was ...The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was presented and then the experimental setup of PECF system was established.The Taguchi method was introduced to assess the effect of finishing parameters on the gear tooth surface roughness,and the training data was also obtained through experiments.The comparison between the predicted values and the experimental values under the same conditions was carried out.The results show that the predicted values are found to be approximately consistent with the experimental values.The mean absolute percent error (MAPE) is 2.43% for the surface roughness and 2.61% for the applied voltage.展开更多
A turbulent flow is maintained by an external supply of kinetic gradients. The scale at which energy is supplied greatly differs energy, which is eventually dissipated into heat at steep velocity from the scale at whi...A turbulent flow is maintained by an external supply of kinetic gradients. The scale at which energy is supplied greatly differs energy, which is eventually dissipated into heat at steep velocity from the scale at which energy is dissipated, the more so as the turbulent intensity (the Reynolds number) is larger. The resulting energy flux over the range of scales, intermediate between energy injection and dissipation, acts as a source of time irreversibility. As it is now possible to follow accurately fluid particles in a turbulent flow field, both from laboratory experiments and from numerical simulations, a natural question arises: how do we detect time irreversibility from these Lagrangian data? Here we discuss recent results concerning this problem. For Lagrangian statistics involving more than one fluid particle, the distance between fluid particles introduces an intrinsic length scale into the problem. The evolution of quantities dependent on the relative motion between these fluid particles, including the kinetic energy in the relative motion, or the configuration of an initially isotropic structure can be related to the equal-time correlation functions of the velocity field, and is therefore sensitive to the energy flux through scales, hence to the irreversibility of the flow. In contrast, for single- particle Lagrangian statistics, the most often studied velocity structure functions cannot distinguish the "arrow of time". Recent observations from experimental and numerical simulation data, however, show that the change of kinetic energy following the particle motion, is sensitive to time-reversal. We end the survey with a brief discussion of the implication of this line of work.展开更多
基金Project(61372136) supported by the National Natural Science Foundation of China
文摘The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.
基金The project supported by National Natural Science Foundation of China under Grant No.10274055the Research Fund for the Doctoral Program of High Education of China under Grant No.20020610001
文摘We introduce a first-principles density-functional theory,i.e.the finite-difference pseudopotential density- functional theory in real space and the Langevin molecular dynamics annealing technique,to the descriptions of structures and some properties of small carbon clusters(C_N,N=2~8).It is shown that the odd-numbered clusters have linear structures and most of the even-numbered clusters prefer cyclic structures.
基金supported by the National Natural Science Foundation General Program of China(No.61201146)the National Basic Research Program of China(2013CB329003)the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2015022)
文摘Recently a Hybrid Carrier (HC) scheme based on Weighted-type Fractional Fourier Transform (WFRFT) was proposed and developed, which contains Single Carrier (SC) and Multi-Carrier (MC) synergetie transmission. The wide interest is primarily due to its appealing characteristics, such as the robust performances in different types of selective fading channels and a great deal of potential for secure communications. According to the literatures, the HC signal and SC or MC signal probability distributions are different. In particular, some benefits of this HC scheme are brought by the quasi-Gaussian distribution of WFRFT signals. However, until now researchers have only presented statistic properties through computer simulations, and the accurate expressions of signals are not derived yet. In this paper, we derive the accu- rate and rigorously established closed-form expressions of Probability Density Function (PDF) of WFRFT signal real and imaginary parts with a large number of QPSK subcarriers, and this PDF can describe the behavior of data modulated by WFRFT, avoiding the complex computation for extensive computer simulations. Furthermore, the components of PDF expression are described and analyzed, and it is revealed that the tendency of signal quasi-Gaussian changes with the increasing of the parameter a (a in (0,1]). To validate the analytical results, extensive simulations have been conducted, showing a very good match between the analytical results and the real situations. The contribution of this paper may be useful to deduce the closed form expressions of Bit Error Ratio (BER), the Complementary Cumulative Distribution Function (CCDF) of Peak to Average Power Ratio (PAPR), and other analytical studies which adopt the PDF.
文摘According to the problem of energy consumption in wireless sensor network (WSN),this paper puts forward a routing optimization algorithm with quality of multi-service, using the function of routing optimization with quality of multi-service and membership function of satisfaction, which integrates the energy consumption of communication and residual and the information of time delay into the membership function of satisfaction to solve the equilibrium factor, so that it can become the optimal routing that balances the network lifetime, transmission delay of data, and node energy consumption of nodes. Simulation experiment shows that adopting the algorithm can make lifecycle of nodes longer and network transmit more data packets at the same time. Experimental results verify the algorithm can effectively balance the network energy, reduce the energy consumption and prolong the network lifetime.
文摘Spatial pattern and interdependence of different soil and plant parameters were examined in green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari (MAIB), Italy. The study aimed to identify the spatial distribution of soil and plant parameters and their relationship at transects scale. The experiment consisted of three transects of 30 m length and 4.2 m width, irrigated with three different salinity levels (1 dSm"1, 3 dSm1, 6 dSml). Soil measurements (electrical conductivity and soil water content) were monitored along each transect in 24 sites, using TDR probe installed vertically at soil surface. Water storage was measured by using Diviner sensor for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same 24 sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Root length Density (RID) and Evapotranspiration fluxes (ET). Soil and plant properties were analyzed using both classical and geostatistical methods which included descriptive statistics, semivariograms and cross-semivariograms. Results indicated that moderate to large spatial variability existed across the field for soil and plant parameters, especially under the 6 dSm1 salinity treatment. A relatively satisfactory fit of the experimental cross-semivariogram was obtained for the 6 dS1, thus indicating similar spatial structures of the pairs of compared variables. By contrast, the experimental cross-semivariograms observed under the 3 dS~ treatment indicated no significant correlation structure between the compared variables. Overall, the results observed in the 3 dSm-1 were not significantly different from those obtained in the 1 dSm-1 transect and suggested a general insensitivity of the crop response to those levels of salinity.
基金Project(2011CB013800)supported by the National Basic Research Program of ChinaProject(10672063)supported by the National Natural Science Foundation of ChinaProject(Y201119)supported by the Hubei Province Key Laboratory of Systems Science in Metallurgical Process,China
文摘In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial functions with respect to stress and temperature. A series of uniaxial compressive creep experiments are performed at various stress and temperature conditions in order to determine these parameter functions, and then the proposed model is validated by comparison between the predictions and experiments at the other loading conditions. It is shown that very small permanent deformation at low stress and temperature increases rapidly with elevated stress or temperature and the damage may initiate in the stationary stage but mainly develops in the accelerated stage. Compared with the visco-elastoplastic models without damage, the predictions from the proposed model is in better agreement with the experiments, and can better capture the rate-dependency in creep responses of asphalt mastic especially below its softening point of 47 ℃
基金Supported partly by SRF for ROCS,SEM under Grant No.20071108
文摘Based on the transverse Ising model and using decoupling approximation to the Fermi-type Green's function, we study the phase transition properties of the epitaxial ferroeleetric film with one substrate. A general recursive equation of the ferroelectric thin film with two n-layer materials is obtained, which enables us to study the phase transition properties for any number layers for epitaxial ferroelectric thin film. With the help of this equation, we analyze the effect of the exchange interaction and the transverse field in the phase diagram, the influence to the polarizations and Curie temperature numerically. The results show that epitaxial ferroelectric film are able to induce a strong increase or decrease of Curie temperature to different exchange interactions and transverse fields within the epitaxial film layers. The theoretical results are in reasonable accordance with experimental data of different ferroelectric thin film.
基金Project(90923022) supported by the National Natural Science Foundation of ChinaProject(2009220022) supported by Liaoning Science and Technology Foundation,China
文摘The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was presented and then the experimental setup of PECF system was established.The Taguchi method was introduced to assess the effect of finishing parameters on the gear tooth surface roughness,and the training data was also obtained through experiments.The comparison between the predicted values and the experimental values under the same conditions was carried out.The results show that the predicted values are found to be approximately consistent with the experimental values.The mean absolute percent error (MAPE) is 2.43% for the surface roughness and 2.61% for the applied voltage.
基金grateful to the Max Planck Society for continuous support to our research.financial support from ANR(contract TEC 2),the Alexander von Humboldt Foundation,and the PSMN at the Ecole Normale Sup′erieure de Lyon
文摘A turbulent flow is maintained by an external supply of kinetic gradients. The scale at which energy is supplied greatly differs energy, which is eventually dissipated into heat at steep velocity from the scale at which energy is dissipated, the more so as the turbulent intensity (the Reynolds number) is larger. The resulting energy flux over the range of scales, intermediate between energy injection and dissipation, acts as a source of time irreversibility. As it is now possible to follow accurately fluid particles in a turbulent flow field, both from laboratory experiments and from numerical simulations, a natural question arises: how do we detect time irreversibility from these Lagrangian data? Here we discuss recent results concerning this problem. For Lagrangian statistics involving more than one fluid particle, the distance between fluid particles introduces an intrinsic length scale into the problem. The evolution of quantities dependent on the relative motion between these fluid particles, including the kinetic energy in the relative motion, or the configuration of an initially isotropic structure can be related to the equal-time correlation functions of the velocity field, and is therefore sensitive to the energy flux through scales, hence to the irreversibility of the flow. In contrast, for single- particle Lagrangian statistics, the most often studied velocity structure functions cannot distinguish the "arrow of time". Recent observations from experimental and numerical simulation data, however, show that the change of kinetic energy following the particle motion, is sensitive to time-reversal. We end the survey with a brief discussion of the implication of this line of work.