期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
约束优化问题的实数制免疫-禁忌混合算法 被引量:3
1
作者 李蔚 彭浩宇 +2 位作者 姚利森 盛德仁 陈坚红 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第6期1037-1041,共5页
针对免疫算法局部搜索能力较弱的缺点,提出了实数制编码的免疫-禁忌混合算法,在免疫操作后引入禁忌搜索算法来提高混合算法的爬山能力,从而提高求解精度和搜索速度,适合于约束优化问题的求解.在阐述混合算法计算原理的基础上,提出实数... 针对免疫算法局部搜索能力较弱的缺点,提出了实数制编码的免疫-禁忌混合算法,在免疫操作后引入禁忌搜索算法来提高混合算法的爬山能力,从而提高求解精度和搜索速度,适合于约束优化问题的求解.在阐述混合算法计算原理的基础上,提出实数制编码方式、惩罚函数法和适应度函数构造方法.通过测试算例进行验算,计算结果表明,实数制编码的免疫-禁忌混合算法收敛速度快,计算精度高,特别适合计算复杂、时效性强的优化问题. 展开更多
关键词 约束优化问题 免疫算法 禁忌搜索算法 实数制算法
下载PDF
Hybrid Improved Self-adaptive Differential Evolution and Nelder-Mead Simplex Method for Solving Constrained Real-Parameters
2
作者 Ngoc-Tam Bui Hieu Pham Hiroshi Hasegawa 《Journal of Mechanics Engineering and Automation》 2013年第9期551-559,共9页
In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-... In this paper, a new hybrid algorithm based on exploration power of a new improvement self-adaptive strategy for controlling parameters in DE (differential evolution) algorithm and exploitation capability of Nelder-Mead simplex method is presented (HISADE-NMS). The DE has been used in many practical cases and has demonstrated good convergence properties. It has only a few control parameters as number of particles (NP), scaling factor (F) and crossover control (CR), which are kept fixed throughout the entire evolutionary process. However, these control parameters are very sensitive to the setting of the control parameters based on their experiments. The value of control parameters depends on the characteristics of each objective function, therefore, we have to tune their value in each problem that mean it will take too long time to perform. In the new manner, we present a new version of the DE algorithm for obtaining self-adaptive control parameter settings. Some modifications are imposed on DE to improve its capability and efficiency while being hybridized with Nelder-Mead simplex method. To valid the robustness of new hybrid algorithm, we apply it to solve some examples of structural optimization constraints. 展开更多
关键词 Differential evolution hybrid algorithms evolutionary computation global search local search simplex method.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部