To confirm the rheological characteristic of sewage in the research and application of urban sewage source heat pump system, the viscosity of sewage was investigated. The tube-type rheometer was used in this experimen...To confirm the rheological characteristic of sewage in the research and application of urban sewage source heat pump system, the viscosity of sewage was investigated. The tube-type rheometer was used in this experimental study, and the sewage was treated as homogeneous non-Newtonian fluid. In addition, the relational expression between viscosity parameters was developed, and the function of apparent viscosity was obtained. It is concluded that the viscosity characteristic of sewage is influenced largely by complex mixture in sewage, and the sewage has the characteristic of sheared densification fluid.展开更多
In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial func...In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial functions with respect to stress and temperature. A series of uniaxial compressive creep experiments are performed at various stress and temperature conditions in order to determine these parameter functions, and then the proposed model is validated by comparison between the predictions and experiments at the other loading conditions. It is shown that very small permanent deformation at low stress and temperature increases rapidly with elevated stress or temperature and the damage may initiate in the stationary stage but mainly develops in the accelerated stage. Compared with the visco-elastoplastic models without damage, the predictions from the proposed model is in better agreement with the experiments, and can better capture the rate-dependency in creep responses of asphalt mastic especially below its softening point of 47 ℃展开更多
With the development of the micro-electro-mechanical system (MEMS),the flow characteristics in micro-channels have drawn increasing attention.In this paper,numerical simulations are conducted to investigate the flow c...With the development of the micro-electro-mechanical system (MEMS),the flow characteristics in micro-channels have drawn increasing attention.In this paper,numerical simulations are conducted to investigate the flow characteristics of compressible flow through micro-channels and micronozzles.An improved surface roughness viscosity model is used to simulate the effect of surface roughness on micro-channels flow characteristics.Using this model,better agreements between the computational results and the experimental data are found.The result indicates that the surface roughness is one of the important factors affecting the flow characteristics of gas through micro-channels.The numerical investigation on the expansion channel shows that by using the laminar model that considers surface roughness,the computational results and experimental data are consistent when Re<450,whereas deviation increases when Re>450.Based on the synthetic model with considerations of turbulence viscosity and surface roughness,the numerical results and the experimental data are identical.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.50578048)
文摘To confirm the rheological characteristic of sewage in the research and application of urban sewage source heat pump system, the viscosity of sewage was investigated. The tube-type rheometer was used in this experimental study, and the sewage was treated as homogeneous non-Newtonian fluid. In addition, the relational expression between viscosity parameters was developed, and the function of apparent viscosity was obtained. It is concluded that the viscosity characteristic of sewage is influenced largely by complex mixture in sewage, and the sewage has the characteristic of sheared densification fluid.
基金Project(2011CB013800)supported by the National Basic Research Program of ChinaProject(10672063)supported by the National Natural Science Foundation of ChinaProject(Y201119)supported by the Hubei Province Key Laboratory of Systems Science in Metallurgical Process,China
文摘In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial functions with respect to stress and temperature. A series of uniaxial compressive creep experiments are performed at various stress and temperature conditions in order to determine these parameter functions, and then the proposed model is validated by comparison between the predictions and experiments at the other loading conditions. It is shown that very small permanent deformation at low stress and temperature increases rapidly with elevated stress or temperature and the damage may initiate in the stationary stage but mainly develops in the accelerated stage. Compared with the visco-elastoplastic models without damage, the predictions from the proposed model is in better agreement with the experiments, and can better capture the rate-dependency in creep responses of asphalt mastic especially below its softening point of 47 ℃
基金supported by the National Natural Science Foundation of China(Grant No. 10872106)
文摘With the development of the micro-electro-mechanical system (MEMS),the flow characteristics in micro-channels have drawn increasing attention.In this paper,numerical simulations are conducted to investigate the flow characteristics of compressible flow through micro-channels and micronozzles.An improved surface roughness viscosity model is used to simulate the effect of surface roughness on micro-channels flow characteristics.Using this model,better agreements between the computational results and the experimental data are found.The result indicates that the surface roughness is one of the important factors affecting the flow characteristics of gas through micro-channels.The numerical investigation on the expansion channel shows that by using the laminar model that considers surface roughness,the computational results and experimental data are consistent when Re<450,whereas deviation increases when Re>450.Based on the synthetic model with considerations of turbulence viscosity and surface roughness,the numerical results and the experimental data are identical.