Due to 5G's stringent and uncertainty traffic requirements,open ecosystem would be one inevitable way to develop 5G.On the other hand,GPP based mobile communication becomes appealing recently attributed to its str...Due to 5G's stringent and uncertainty traffic requirements,open ecosystem would be one inevitable way to develop 5G.On the other hand,GPP based mobile communication becomes appealing recently attributed to its striking advantage in flexibility and re-configurability.In this paper,both the advantages and challenges of GPP platform are detailed analyzed.Furthermore,both GPP based software and hardware architectures for open 5G are presented and the performances of real-time signal processing and power consumption are also evaluated.The evaluation results indicate that turbo and power consumption may be another challengeable problem should be further solved to meet the requirements of realistic deployments.展开更多
In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware m...In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware multithread is discussed and a novel dynamic multithreaded architecture is proposed. The proposed architecture saves the energy wasted by removing idle threads without manipulation on the original architecture, fulfills a seamless switching mechanism which protects active threads and avoids pipeline stall during power mode switching. The report of an implemented dynamic multithreaded processor with 45 nm process from synthesis tool indicates that the area of dynamic multithreaded architecture is only 2.27% higher than the static one in achieving dynamic power dissipation, and consumes 1.3% more power in the same peak performance.展开更多
基金funded in part by National Natural Science Foundation of China(grant NO.61471347)National S&T Mayor Project of the Ministry of S&T of China(grant NO.2016ZX03001020-003)+1 种基金key program for international S&T Cooperation Program of China(grant NO.2014DFA11640)Shanghai Natural Science Foundation(grant NO.16ZR1435100)
文摘Due to 5G's stringent and uncertainty traffic requirements,open ecosystem would be one inevitable way to develop 5G.On the other hand,GPP based mobile communication becomes appealing recently attributed to its striking advantage in flexibility and re-configurability.In this paper,both the advantages and challenges of GPP platform are detailed analyzed.Furthermore,both GPP based software and hardware architectures for open 5G are presented and the performances of real-time signal processing and power consumption are also evaluated.The evaluation results indicate that turbo and power consumption may be another challengeable problem should be further solved to meet the requirements of realistic deployments.
基金supported partially by the National High Technical Research and Development Program of China (863 Program) under Grants No. 2011AA040101, No. 2008AA01Z134the National Natural Science Foundation of China under Grants No. 61003251, No. 61172049, No. 61173150+2 种基金the Doctoral Fund of Ministry of Education of China under Grant No. 20100006110015Beijing Municipal Natural Science Foundation under Grant No. Z111100054011078the 2012 Ladder Plan Project of Beijing Key Laboratory of Knowledge Engineering for Materials Science under Grant No. Z121101002812005
文摘In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware multithread is discussed and a novel dynamic multithreaded architecture is proposed. The proposed architecture saves the energy wasted by removing idle threads without manipulation on the original architecture, fulfills a seamless switching mechanism which protects active threads and avoids pipeline stall during power mode switching. The report of an implemented dynamic multithreaded processor with 45 nm process from synthesis tool indicates that the area of dynamic multithreaded architecture is only 2.27% higher than the static one in achieving dynamic power dissipation, and consumes 1.3% more power in the same peak performance.