[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo...[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.展开更多
A simple method for calculating distance between a solid sphere and a constructive solid geometry (CSG) so lid primitive (including block, cone, cylinder, sphere, wedge and torus) is derived to support the collision ...A simple method for calculating distance between a solid sphere and a constructive solid geometry (CSG) so lid primitive (including block, cone, cylinder, sphere, wedge and torus) is derived to support the collision detection algorithm. By decomposing the whole space into relative positions and geometric features of the sphere and the primitive considered, closed form distance formula are got. These calculations are very useful in the real time collision detection in which primitives are used as bounding volumes of complex objects.展开更多
[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectual...[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.展开更多
High Frequency(HF) radar current data is assimilated into a shelf sea circulation model based on optimal interpolation(OI) method. The purpose of this work is to develop a real-time computationally highly efficient as...High Frequency(HF) radar current data is assimilated into a shelf sea circulation model based on optimal interpolation(OI) method. The purpose of this work is to develop a real-time computationally highly efficient assimilation method to improve the forecast of shelf current. Since the true state of the ocean is not known, the specification of background error covariance is arduous. Usually, it is assumed or calculated from an ensemble of model states and is kept in constant. In our method, the spatial covariances of model forecast errors are derived from differences between the adjacent model forecast fields, which serve as the forecast tendencies. The assumption behind this is that forecast errors can resemble forecast tendencies, since variances are large when fields change quickly and small when fields change slowly. The implementation of HF radar data assimilation is found to yield good information for analyses. After assimilation, the root-mean-square error of model decreases significantly. Besides, three assimilation runs with variational observation density are implemented. The comparison of them indicates that the pattern described by observations is much more important than the amount of observations. It is more useful to expand the scope of observations than to increase the spatial interval. From our tests, the spatial interval of observation can be 5 times bigger than that of model grid.展开更多
At present time, there has been a demand for management systems that can survey and monitor a PC (personal computer) practice room, movement of people in an office, situation of utilization of facilities and so on i...At present time, there has been a demand for management systems that can survey and monitor a PC (personal computer) practice room, movement of people in an office, situation of utilization of facilities and so on in real time without causing psychological stress. For example, PC administrators in Japanese national educational institutions must report operation status of PC practice rooms once a year. But, there is currently no system for automatically recording PC operating situations. Therefore, the burden on the PC administrators is big. In this study, we aimed at systems for accurately managing the sitting and work time without psychologically stressing PC users. This time, we propose uniform management systems of sitting and work time using smart tap node and mat sensor node by IoT (Internet of Things) technology. The smart tap was connected to PCs to acquire the operating status of the PCs. In parallel with this smart tap, the mat sensor was used to acquire human presence state. By calculating binary data representing the PC operating status and human presence state from the two sensing data (smart tap and mat sensor) by the proposed technique, we can exactly calculate wasteful power consumption etc. The use of IoT technology makes it unnecessary to use large installation services when introducing our system. Therefore, this our proposal system can be easily installed even by unskilled workers.展开更多
Foreground moving object detection is an important process in various computer vision applications such as intelligent visual surveillance, HCI, object-based video compression, etc. One of the most successful moving o...Foreground moving object detection is an important process in various computer vision applications such as intelligent visual surveillance, HCI, object-based video compression, etc. One of the most successful moving object detection algorithms is based on Adaptive Gaussian Mixture Model (AGMM). Although ACMM-hased object detection shows very good performance with respect to object detection accuracy, AGMM is very complex model requiring lots of floatingpoint arithmetic so that it should pay for expensive computational cost. Thus, direct implementation of the AGMM-based object detection for embedded DSPs without floating-point arithmetic HW support cannot satisfy the real-time processing requirement. This paper presents a novel rcal-time implementation of adaptive Gaussian mixture model-based moving object detection algorithm for fixed-point DSPs. In the proposed implementation, in addition to changes of data types into fixed-point ones, magnification of the Gaussian distribution technique is introduced so that the integer and fixed-point arithmetic can be easily and consistently utilized instead of real nmnher and floatingpoint arithmetic in processing of AGMM algorithm. Experimental results shows that the proposed implementation have a high potential in real-time applications.展开更多
A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow ...A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow removal, tracking, and object classification. The Gaussian mixture model was utilized to extract the moving object from an image sequence segmented by the mean-shift technique in the pre-processing module. Shadow removal was used to alleviate the negative impact of the shadow to the detected objects. A model-free method was adopted to identify pedestrians. The maximum and minimum integration methods were developed to integrate multiple cues into the mean-shift algorithm and the initial tracking iteration with the competent integrated probability distribution map for object tracking. A simple but effective algorithm was proposed to handle full occlusion cases. The system was tested using real traffic videos from different sites. The results of the test confirm that the system is reliable and has an overall accuracy of over 85%.展开更多
This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of...This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.展开更多
文摘[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.
文摘A simple method for calculating distance between a solid sphere and a constructive solid geometry (CSG) so lid primitive (including block, cone, cylinder, sphere, wedge and torus) is derived to support the collision detection algorithm. By decomposing the whole space into relative positions and geometric features of the sphere and the primitive considered, closed form distance formula are got. These calculations are very useful in the real time collision detection in which primitives are used as bounding volumes of complex objects.
基金Supported by the Science and Technology Surface Project of Yunnan Province(2010ZC142)the Doctoral Foundation of Dali University(KYBS201015),the Scientific Research Program for College Students of Dali University~~
文摘[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.
基金supported by the State Oceanic Administration Young Marine Science Foundation (No. 2013201)the Shandong Provincial Key Laboratory of Marine Ecology and Environment & Disaster Prevention and Mitigation Foundation (No. 2012007)+1 种基金the Marine Public Foundation (No. 201005018)the North China Sea Branch Scientific Foundation (No. 2014B10)
文摘High Frequency(HF) radar current data is assimilated into a shelf sea circulation model based on optimal interpolation(OI) method. The purpose of this work is to develop a real-time computationally highly efficient assimilation method to improve the forecast of shelf current. Since the true state of the ocean is not known, the specification of background error covariance is arduous. Usually, it is assumed or calculated from an ensemble of model states and is kept in constant. In our method, the spatial covariances of model forecast errors are derived from differences between the adjacent model forecast fields, which serve as the forecast tendencies. The assumption behind this is that forecast errors can resemble forecast tendencies, since variances are large when fields change quickly and small when fields change slowly. The implementation of HF radar data assimilation is found to yield good information for analyses. After assimilation, the root-mean-square error of model decreases significantly. Besides, three assimilation runs with variational observation density are implemented. The comparison of them indicates that the pattern described by observations is much more important than the amount of observations. It is more useful to expand the scope of observations than to increase the spatial interval. From our tests, the spatial interval of observation can be 5 times bigger than that of model grid.
文摘At present time, there has been a demand for management systems that can survey and monitor a PC (personal computer) practice room, movement of people in an office, situation of utilization of facilities and so on in real time without causing psychological stress. For example, PC administrators in Japanese national educational institutions must report operation status of PC practice rooms once a year. But, there is currently no system for automatically recording PC operating situations. Therefore, the burden on the PC administrators is big. In this study, we aimed at systems for accurately managing the sitting and work time without psychologically stressing PC users. This time, we propose uniform management systems of sitting and work time using smart tap node and mat sensor node by IoT (Internet of Things) technology. The smart tap was connected to PCs to acquire the operating status of the PCs. In parallel with this smart tap, the mat sensor was used to acquire human presence state. By calculating binary data representing the PC operating status and human presence state from the two sensing data (smart tap and mat sensor) by the proposed technique, we can exactly calculate wasteful power consumption etc. The use of IoT technology makes it unnecessary to use large installation services when introducing our system. Therefore, this our proposal system can be easily installed even by unskilled workers.
基金supported by Soongsil University Research Fund and BK 21 of Korea
文摘Foreground moving object detection is an important process in various computer vision applications such as intelligent visual surveillance, HCI, object-based video compression, etc. One of the most successful moving object detection algorithms is based on Adaptive Gaussian Mixture Model (AGMM). Although ACMM-hased object detection shows very good performance with respect to object detection accuracy, AGMM is very complex model requiring lots of floatingpoint arithmetic so that it should pay for expensive computational cost. Thus, direct implementation of the AGMM-based object detection for embedded DSPs without floating-point arithmetic HW support cannot satisfy the real-time processing requirement. This paper presents a novel rcal-time implementation of adaptive Gaussian mixture model-based moving object detection algorithm for fixed-point DSPs. In the proposed implementation, in addition to changes of data types into fixed-point ones, magnification of the Gaussian distribution technique is introduced so that the integer and fixed-point arithmetic can be easily and consistently utilized instead of real nmnher and floatingpoint arithmetic in processing of AGMM algorithm. Experimental results shows that the proposed implementation have a high potential in real-time applications.
基金Project(50778015)supported by the National Natural Science Foundation of ChinaProject(2012CB725403)supported by the Major State Basic Research Development Program of China
文摘A real-time pedestrian detection and tracking system using a single video camera was developed to monitor pedestrians. This system contained six modules: video flow capture, pre-processing, movement detection, shadow removal, tracking, and object classification. The Gaussian mixture model was utilized to extract the moving object from an image sequence segmented by the mean-shift technique in the pre-processing module. Shadow removal was used to alleviate the negative impact of the shadow to the detected objects. A model-free method was adopted to identify pedestrians. The maximum and minimum integration methods were developed to integrate multiple cues into the mean-shift algorithm and the initial tracking iteration with the competent integrated probability distribution map for object tracking. A simple but effective algorithm was proposed to handle full occlusion cases. The system was tested using real traffic videos from different sites. The results of the test confirm that the system is reliable and has an overall accuracy of over 85%.
基金supported by the Brain Korea 21 Project in 2011 and MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1121-0010)
文摘This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.