Encoded by seven genes, angiopoietin-like (ANGPTL) family members structurally similar to the angiogenic regulating factor angiopoietin are known to possess biological activities in angiogenesis and metabolism. Here...Encoded by seven genes, angiopoietin-like (ANGPTL) family members structurally similar to the angiogenic regulating factor angiopoietin are known to possess biological activities in angiogenesis and metabolism. Here we reports for the first time the identification and expression analysis of all the seven members of bovine ANGPTL gene family, which were designated bANGPTL1 to bANGPTL7 in order. The seven bANGPTL genes consist of 4-9 exons, span 3800M-3000 bp and are located on different chromosomes. The deduced amino acid sequences of the members all possess an N-terminal coiled-coil domain and a C-terminal fibrinogen-like domain, both characteristics of angiopoietins. Phylogenetic analysis showed that the 32 identified ANGPTL homologs from 9 species could be classified into two major groups. Real-time quantitative PCR (Q-PCR) analysis revealed that the bANGPTL family members have different expression patterns. This study will be helpful for investigation on the biological role of the bANGPTL family in this economically important species. Furthermore, it provides an insight into the molecular evolution of the emerging ANGPTL family展开更多
The temporal and spatial growth behaviour of protein crystals, subject to different cooling strategies in protein crystallisation was investigated. Although the impact of temperature and cooling rate on crystal growth...The temporal and spatial growth behaviour of protein crystals, subject to different cooling strategies in protein crystallisation was investigated. Although the impact of temperature and cooling rate on crystal growth of small molecules was well documented, much less has been reported on their impact on the crystallisation of proteins. In this paper, an experimental set-up is configured to carry out such a study which involves an automatic temperature controlled hot-stage crystalliser fitted with a real-time imaging system. Linbro parallel crystallisation experiments(24-well plate) were also conducted to find the suitable initial conditions to be used in the hot-stage crystallisation experiments, including the initial concentration of HEW lysozyme solutions, precipitate concentration and pH value. It was observed that fast cooling rates at the early stage led to precipitates while slow cooling rates produced crystal nuclei, and very slow cooling rates, much smaller than for small molecules are critical to the growth of the nuclei and the crystals to a desired shape. The interesting results provide valuable insight as well as experimental proof of the feasibility and effectiveness of cooling as a means for achieving controlled protein crystallisation, compared with the evaporation approach which was widely used to grow single large crystals for X-ray diffraction study. Since cooling rate control can be easily achieved and has good repeatability, it suggests that large-scale production of protein crystals can be effectively achieved by manipulating cooling rates.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. JUSRP10916)the Program of 'Qinglan Project' of Jiangsu Province
文摘Encoded by seven genes, angiopoietin-like (ANGPTL) family members structurally similar to the angiogenic regulating factor angiopoietin are known to possess biological activities in angiogenesis and metabolism. Here we reports for the first time the identification and expression analysis of all the seven members of bovine ANGPTL gene family, which were designated bANGPTL1 to bANGPTL7 in order. The seven bANGPTL genes consist of 4-9 exons, span 3800M-3000 bp and are located on different chromosomes. The deduced amino acid sequences of the members all possess an N-terminal coiled-coil domain and a C-terminal fibrinogen-like domain, both characteristics of angiopoietins. Phylogenetic analysis showed that the 32 identified ANGPTL homologs from 9 species could be classified into two major groups. Real-time quantitative PCR (Q-PCR) analysis revealed that the bANGPTL family members have different expression patterns. This study will be helpful for investigation on the biological role of the bANGPTL family in this economically important species. Furthermore, it provides an insight into the molecular evolution of the emerging ANGPTL family
基金Supported by the China One Thousand Talent Scheme,the National Natural Science Foundation of China under its Major Research Scheme of Meso-scale Mechanism and Control in Multi-phase Reaction Processes(91434126)the Natural Science Foundation of Guangdong Province(2014A030313228)+1 种基金benefited from early work funded by UK Engineering and Physical Science Research Council(EP/H008012/1EP/H008853/1)
文摘The temporal and spatial growth behaviour of protein crystals, subject to different cooling strategies in protein crystallisation was investigated. Although the impact of temperature and cooling rate on crystal growth of small molecules was well documented, much less has been reported on their impact on the crystallisation of proteins. In this paper, an experimental set-up is configured to carry out such a study which involves an automatic temperature controlled hot-stage crystalliser fitted with a real-time imaging system. Linbro parallel crystallisation experiments(24-well plate) were also conducted to find the suitable initial conditions to be used in the hot-stage crystallisation experiments, including the initial concentration of HEW lysozyme solutions, precipitate concentration and pH value. It was observed that fast cooling rates at the early stage led to precipitates while slow cooling rates produced crystal nuclei, and very slow cooling rates, much smaller than for small molecules are critical to the growth of the nuclei and the crystals to a desired shape. The interesting results provide valuable insight as well as experimental proof of the feasibility and effectiveness of cooling as a means for achieving controlled protein crystallisation, compared with the evaporation approach which was widely used to grow single large crystals for X-ray diffraction study. Since cooling rate control can be easily achieved and has good repeatability, it suggests that large-scale production of protein crystals can be effectively achieved by manipulating cooling rates.