The analysis and simulation of power system are becoming more and more challenging as the complexity of system topology and components has been increased. In this paper, a hybrid parallel algorithm is proposed for the...The analysis and simulation of power system are becoming more and more challenging as the complexity of system topology and components has been increased. In this paper, a hybrid parallel algorithm is proposed for the real-time electromagnetic transient simulation (EMTS) of integrated power systems containing multiphase machines. The proposed algorithm is com- posed of a novel network partition method called component level parallelization and the Multi-Area Thevenin Equivalent (MATE) method, which extends the flexibility of the network partition in parallel simulation. Moreover, several methods are developed to enhance the efficiency of the communication and computation. Power systems with up to 410 single-phase elec- trical nodes and 336 switches are simulated in a time step of 50 ~ts to validate the proposed algorithm.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51277104,51207076)the Postdoctoral Science Foundation of China (Grant No. 20110490351)
文摘The analysis and simulation of power system are becoming more and more challenging as the complexity of system topology and components has been increased. In this paper, a hybrid parallel algorithm is proposed for the real-time electromagnetic transient simulation (EMTS) of integrated power systems containing multiphase machines. The proposed algorithm is com- posed of a novel network partition method called component level parallelization and the Multi-Area Thevenin Equivalent (MATE) method, which extends the flexibility of the network partition in parallel simulation. Moreover, several methods are developed to enhance the efficiency of the communication and computation. Power systems with up to 410 single-phase elec- trical nodes and 336 switches are simulated in a time step of 50 ~ts to validate the proposed algorithm.