深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved dee...深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved deep Q-network,MDQN)算法。该算法将深度神经网络表达为混合整数规划公式,以确保在动作空间内严格执行所有操作约束,从而保证了所制定的调度在实际运行中的可行性。此外,还进行了敏感性分析,以灵活地调整超参数,为算法的优化提供了更大的灵活性。最后,通过对比实验验证了MDQN算法的优越性能。该算法为应对虚拟电厂运营中的复杂性问题提供了一种有效的解决方案。展开更多
电离层天气变化正成为目前空间天气预报最重要的内容之一,建立一个可靠的、精确的电离层特征参量现报和预报系统对空间科学研究及军民用无线电信息系统保障均具有重要价值。基于国际GNSS服务组织(International GNSS Service,IGS)的地基...电离层天气变化正成为目前空间天气预报最重要的内容之一,建立一个可靠的、精确的电离层特征参量现报和预报系统对空间科学研究及军民用无线电信息系统保障均具有重要价值。基于国际GNSS服务组织(International GNSS Service,IGS)的地基GNSS和全球电离层无线电观测站(Global Ionospheric Radio Observatory,GIRO)数字测高仪的实时数据,以国际参考电离层(International Reference Ionosphere,IRI)模型为背景模型,采用高斯-马尔可夫-限带卡尔曼滤波同化技术,结合超大规模矩阵稀疏存储与处理方法,在云计算平台上构建完成了近实时全球电离层数据同化和预报系统(near-Real-Time Global Ionospheric Data AssiMilation and forecasting system,RT-GIDAM)。该系统具备了全球电离层TEC和电子密度的近实时(延时约5 min)、较高空间(5°×2.5°)和时间分辨率(15 min)的同化和预报功能,可为空间物理研究及相关无线电系统应用提供数据支撑。展开更多
文摘深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved deep Q-network,MDQN)算法。该算法将深度神经网络表达为混合整数规划公式,以确保在动作空间内严格执行所有操作约束,从而保证了所制定的调度在实际运行中的可行性。此外,还进行了敏感性分析,以灵活地调整超参数,为算法的优化提供了更大的灵活性。最后,通过对比实验验证了MDQN算法的优越性能。该算法为应对虚拟电厂运营中的复杂性问题提供了一种有效的解决方案。
文摘电离层天气变化正成为目前空间天气预报最重要的内容之一,建立一个可靠的、精确的电离层特征参量现报和预报系统对空间科学研究及军民用无线电信息系统保障均具有重要价值。基于国际GNSS服务组织(International GNSS Service,IGS)的地基GNSS和全球电离层无线电观测站(Global Ionospheric Radio Observatory,GIRO)数字测高仪的实时数据,以国际参考电离层(International Reference Ionosphere,IRI)模型为背景模型,采用高斯-马尔可夫-限带卡尔曼滤波同化技术,结合超大规模矩阵稀疏存储与处理方法,在云计算平台上构建完成了近实时全球电离层数据同化和预报系统(near-Real-Time Global Ionospheric Data AssiMilation and forecasting system,RT-GIDAM)。该系统具备了全球电离层TEC和电子密度的近实时(延时约5 min)、较高空间(5°×2.5°)和时间分辨率(15 min)的同化和预报功能,可为空间物理研究及相关无线电系统应用提供数据支撑。