To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature condit...To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature conditions based on the split Hopkinson pressure bar system.Experimental and analytical methods were applied to investigating the effect of temperature gradient on the stress waves.A high-speed camera was used to check the fracture characteristics of the specimens.The results demonstrate that the temperature gradient on the bars will not significantly distort the shape of the stress wave.The dynamic force balance is achieved even when the specimens are at a temperature of 400°C.The dynamic fracture toughness linearly develops with the increase of loading rate within the temperature range of 25-400°C,and high temperature has a strengthening effect on the dynamic fracture toughness.展开更多
ln-situ transmission electron microscopy in combination with a heating stage has been employed to real-time monitor varia- tions of δ-phase MnO2 nanoflowers in terms of their morphology and crystalline structures upo...ln-situ transmission electron microscopy in combination with a heating stage has been employed to real-time monitor varia- tions of δ-phase MnO2 nanoflowers in terms of their morphology and crystalline structures upon thermal annealing at elevated temperatures up to -665 ℃. High-temperature annealing drives the diffusion of the small δ-MnO2 nanocrystallites within short distances less than 15 nm and the fusion of the adjacent δ-MnO: nanocrystallites, leading to the formation of larger crystalline domains including highly crystalline nanorods. The annealed nanoflowers remain their overall flower-like morphology while they are converted to α-MnO2. The preferred transformation of the δ-MnO2 to the α-MnO2 can be ascribed to the close lattice spacing of most crystalline lattices between δ-MnO2 and α-MnO2, that might lead to a possible epitaxial growth of ct-MnO2 lattices on the 8-MnO2 lattices during the thermal annealing process.展开更多
基金support from the National Natural Science Foundation of China(No.41972283)。
文摘To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature conditions based on the split Hopkinson pressure bar system.Experimental and analytical methods were applied to investigating the effect of temperature gradient on the stress waves.A high-speed camera was used to check the fracture characteristics of the specimens.The results demonstrate that the temperature gradient on the bars will not significantly distort the shape of the stress wave.The dynamic force balance is achieved even when the specimens are at a temperature of 400°C.The dynamic fracture toughness linearly develops with the increase of loading rate within the temperature range of 25-400°C,and high temperature has a strengthening effect on the dynamic fracture toughness.
基金the Center for Nanoscale Materials, a U.S.Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under contract No. DE-AC02-06CH11357Use of the Electron Microscopy Center for Materials Research and Advanced Photon Source (Beam line 11-ID-C) at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of BasicEnergy Sciences, under contract No. DE-AC02-06CH11357
文摘ln-situ transmission electron microscopy in combination with a heating stage has been employed to real-time monitor varia- tions of δ-phase MnO2 nanoflowers in terms of their morphology and crystalline structures upon thermal annealing at elevated temperatures up to -665 ℃. High-temperature annealing drives the diffusion of the small δ-MnO2 nanocrystallites within short distances less than 15 nm and the fusion of the adjacent δ-MnO: nanocrystallites, leading to the formation of larger crystalline domains including highly crystalline nanorods. The annealed nanoflowers remain their overall flower-like morphology while they are converted to α-MnO2. The preferred transformation of the δ-MnO2 to the α-MnO2 can be ascribed to the close lattice spacing of most crystalline lattices between δ-MnO2 and α-MnO2, that might lead to a possible epitaxial growth of ct-MnO2 lattices on the 8-MnO2 lattices during the thermal annealing process.