对分块实对称正定矩阵A,B,C和D,证明了一个矩阵等式( A ⊙ B ) # ( C ⊙ D ) = ( A # C ) ⊙ ( B # D ),这里A ⊙ B和A # B分别是A与B的Tracy-Singh乘积和几何平均,如果A和B是分块实对称矩阵,则有矩阵不等式 ≥ ,其中是矩阵和的K...对分块实对称正定矩阵A,B,C和D,证明了一个矩阵等式( A ⊙ B ) # ( C ⊙ D ) = ( A # C ) ⊙ ( B # D ),这里A ⊙ B和A # B分别是A与B的Tracy-Singh乘积和几何平均,如果A和B是分块实对称矩阵,则有矩阵不等式 ≥ ,其中是矩阵和的Khatri -Rao乘积。展开更多
文摘对分块实对称正定矩阵A,B,C和D,证明了一个矩阵等式( A ⊙ B ) # ( C ⊙ D ) = ( A # C ) ⊙ ( B # D ),这里A ⊙ B和A # B分别是A与B的Tracy-Singh乘积和几何平均,如果A和B是分块实对称矩阵,则有矩阵不等式 ≥ ,其中是矩阵和的Khatri -Rao乘积。