When studying the dam-break flow phenomenon,the basic hydrodynamic features of the dam-break flow at the gate location should be verified primarily.In this study,laboratory experiments were performed in a rectangular ...When studying the dam-break flow phenomenon,the basic hydrodynamic features of the dam-break flow at the gate location should be verified primarily.In this study,laboratory experiments were performed in a rectangular and horizontal flume with the same initial water head setting on the dry and wet downstream bed conditions.Water surface elevation was extracted through image analysis and validated by comparing with the data measured using a wave gauge.Temporal variation of the water surface elevation at the gate location,quantified in terms of high-speed video recorded images,can be divided into three stages,the sharp decreasing stage,the relatively steady stage,and the gradually decreasing stage.Applicability of several classic analytical solutions of the dam-break problem at the gate location was validated using present experimental data.Ritter's solution is effective for the dry bed condition while Stoker's solution could be applied to the wet bed case,and both are only applicable during the steady stage.Lin' solution reproduces the gate-site hydrographs well during both the relatively steady and the gradually decreasing stages,especially for the condition under which the down-upstream water depth ratio is smaller than 0.138.展开更多
The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging t...The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging test section specifically designed to attain a local velocity distribution typical of a high-lift LPT blade. Both experimental and numerical investigations have been carried out. Unsteady RANS results have been compared with experiments in terms of time-averaged velocity and turbulence intensity distributions. Two different Reynolds number cases have been investigated, namely Re = 200,000 and Re = 70,000, which characterize low-pressure turbine operating conditions during take-off/landing and cruise. A range of synthetic jet aerodynamic parameters (Strouhal number and blowing ratio) has been tested in order to analyze the features of control-separated boundary layer interaction for the aforementioned Reynolds numbers.展开更多
基金financially supported by the Natural Science Foundation of Zhejiang Province,China(No.LR14E090002)the National Natural Science Foundation of China(No.11632012)the Open Research Fund Program of State key Laboratory of Hydroscience and Engineering(No.sklhse-2016-B-02)
文摘When studying the dam-break flow phenomenon,the basic hydrodynamic features of the dam-break flow at the gate location should be verified primarily.In this study,laboratory experiments were performed in a rectangular and horizontal flume with the same initial water head setting on the dry and wet downstream bed conditions.Water surface elevation was extracted through image analysis and validated by comparing with the data measured using a wave gauge.Temporal variation of the water surface elevation at the gate location,quantified in terms of high-speed video recorded images,can be divided into three stages,the sharp decreasing stage,the relatively steady stage,and the gradually decreasing stage.Applicability of several classic analytical solutions of the dam-break problem at the gate location was validated using present experimental data.Ritter's solution is effective for the dry bed condition while Stoker's solution could be applied to the wet bed case,and both are only applicable during the steady stage.Lin' solution reproduces the gate-site hydrographs well during both the relatively steady and the gradually decreasing stages,especially for the condition under which the down-upstream water depth ratio is smaller than 0.138.
基金The support of the Italian Ministry of the University and Scientific Research(MIUR)under the PRIN project number 2007R3AXLH is greatly acknowledged
文摘The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging test section specifically designed to attain a local velocity distribution typical of a high-lift LPT blade. Both experimental and numerical investigations have been carried out. Unsteady RANS results have been compared with experiments in terms of time-averaged velocity and turbulence intensity distributions. Two different Reynolds number cases have been investigated, namely Re = 200,000 and Re = 70,000, which characterize low-pressure turbine operating conditions during take-off/landing and cruise. A range of synthetic jet aerodynamic parameters (Strouhal number and blowing ratio) has been tested in order to analyze the features of control-separated boundary layer interaction for the aforementioned Reynolds numbers.