The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity...The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.展开更多
The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model f...The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model for vibration behaviour prediction, the AC piping elastic end support characterization has been explored. The axial and radial stiffness variables (ka, kr1, kr2) of the compressor-piping mounting are obtained and represented by dynamic stiffness of compressor grommet. They are obtained from dynamic load deflection test based on compressor operating condition such as excitation frequency and amplitude. The unknown stiffness variables of the other tube end (chassis-piping mounting) are determined by parameter fine tuning. An experimental modal analysis using impact hammer test has also been employed to determine the vibration properties such as natural frequencies, mode shapes and damping ratio of the piping structures. The modal parameters acquisition using SCADAS mobile acquisition system and LMS Impact Testing software is compared with the corresponding simulated modal properties using Abaqus. Most of the simulated natural frequencies achieve good correlation with the measured frequencies and it is reasonably a good prediction model to predict vibration behaviour of AC piping structures.展开更多
A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of bal...A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of balanced homodyne detection systems respectively.The relative phases between the local beams and the detected beams can be locked by using the optical phase modulation technique.The covariance matrix of the two-mode entangled state was obtained when the relative phase of the local beam and the detected beam in one homodyne detection system is locked and the other is scanned.This method provides a way by which one can extract the covariance matrix of any selected quadrature components of two-mode Gaussian state.展开更多
Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading a...Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading are performed.Complete stress–strain relationships are then obtained.Significant increase in dynamic strength is found when the pre-loadings are imposed within the elastic limit of concrete.However,when the imposition of pre-loadings reaches the plastic or softening range,dynamic strengths may gradually decrease along with the increase in pre-loadings.The distribution of energy components and the failure modes are discussed to explain the mechanisms of the phenomena.展开更多
基金supported by National Natural Science Foundation of China(41474115,42174155)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)。
文摘The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.
文摘The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model for vibration behaviour prediction, the AC piping elastic end support characterization has been explored. The axial and radial stiffness variables (ka, kr1, kr2) of the compressor-piping mounting are obtained and represented by dynamic stiffness of compressor grommet. They are obtained from dynamic load deflection test based on compressor operating condition such as excitation frequency and amplitude. The unknown stiffness variables of the other tube end (chassis-piping mounting) are determined by parameter fine tuning. An experimental modal analysis using impact hammer test has also been employed to determine the vibration properties such as natural frequencies, mode shapes and damping ratio of the piping structures. The modal parameters acquisition using SCADAS mobile acquisition system and LMS Impact Testing software is compared with the corresponding simulated modal properties using Abaqus. Most of the simulated natural frequencies achieve good correlation with the measured frequencies and it is reasonably a good prediction model to predict vibration behaviour of AC piping structures.
基金supported by the National Basic Research Program of China(Grant No.2011CB921601)the National Natural Science Foundation of China(Grant No.11234008)+1 种基金the NSFC Project for Excellent Research Team(Grant Nos.61121064 and 11234008)Doctoral Program Foundation of the Ministry of Education China(Grant No.20111401130001)
文摘A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of balanced homodyne detection systems respectively.The relative phases between the local beams and the detected beams can be locked by using the optical phase modulation technique.The covariance matrix of the two-mode entangled state was obtained when the relative phase of the local beam and the detected beam in one homodyne detection system is locked and the other is scanned.This method provides a way by which one can extract the covariance matrix of any selected quadrature components of two-mode Gaussian state.
基金supported by the National Natural Science Foundation of China(Grant Nos.51239006,91215301 and 51479098)
文摘Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading are performed.Complete stress–strain relationships are then obtained.Significant increase in dynamic strength is found when the pre-loadings are imposed within the elastic limit of concrete.However,when the imposition of pre-loadings reaches the plastic or softening range,dynamic strengths may gradually decrease along with the increase in pre-loadings.The distribution of energy components and the failure modes are discussed to explain the mechanisms of the phenomena.