A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the...A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the same base are independent of each other and can be computed in parallel.Moreover,a simple and fast base transformation is used to achieve RNS Montgomery modular multiplication algorithm,which facilitates hardware implementation.Based on transport triggered architecture(TTA),the proposed architecture is designed to evaluate the performance and feasibility of the algorithm.With these optimizations,a decryption rate of 106 kbps can be achieved for 1 024-b RSA at the frequency of 100 MHz.展开更多
基金Supported by the Natural Science Foundation of Tianjin (No. 11JCZDJC15800)the National Natural Science Foundation of China(No. 61003306)
文摘A parallel architecture for efficient hardware implementation of Rivest Shamir Adleman(RSA) cryptography is proposed.Residue number system(RNS) is introduced to realize high parallelism,thus all the elements under the same base are independent of each other and can be computed in parallel.Moreover,a simple and fast base transformation is used to achieve RNS Montgomery modular multiplication algorithm,which facilitates hardware implementation.Based on transport triggered architecture(TTA),the proposed architecture is designed to evaluate the performance and feasibility of the algorithm.With these optimizations,a decryption rate of 106 kbps can be achieved for 1 024-b RSA at the frequency of 100 MHz.