Trans-sobrerol (Sob) and 8-p-menthen-1,2-diol (Limo-diol) are the primary products in the atmospheric oxidation of α-pinene and limonene, respectively. Because of their low volatility, they associate more likely ...Trans-sobrerol (Sob) and 8-p-menthen-1,2-diol (Limo-diol) are the primary products in the atmospheric oxidation of α-pinene and limonene, respectively. Because of their low volatility, they associate more likely to the liquid particles in the atmosphere, where they are subject to the aqueous phase oxidation by the atmospheric oxidants. In this work, through experimental and theoretical study, we first provide the rate constants of Sob and Limo-diol reacting with hydroxyl radical (.OH) in aqueous solution at room temperature of 3044-3 K and 1 atm pressure, which are (3.05±0.5)×10 9 and (4.57±0.2)×10 9 L/(mol.s), respectively. Quantum chemistry calculations have also been employed to demonstrate the solvent effect on the rate constants in aqueous phase and the calculated results agree well with the measurements. Some reaction products have been identified based on liquid chromatography combined with mass spectroscopy and theoretical calculations.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.21177041 and No.21107026), the Fundamental Research Funds for the Central Universities (No.2013ZZ0073), and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry.
文摘Trans-sobrerol (Sob) and 8-p-menthen-1,2-diol (Limo-diol) are the primary products in the atmospheric oxidation of α-pinene and limonene, respectively. Because of their low volatility, they associate more likely to the liquid particles in the atmosphere, where they are subject to the aqueous phase oxidation by the atmospheric oxidants. In this work, through experimental and theoretical study, we first provide the rate constants of Sob and Limo-diol reacting with hydroxyl radical (.OH) in aqueous solution at room temperature of 3044-3 K and 1 atm pressure, which are (3.05±0.5)×10 9 and (4.57±0.2)×10 9 L/(mol.s), respectively. Quantum chemistry calculations have also been employed to demonstrate the solvent effect on the rate constants in aqueous phase and the calculated results agree well with the measurements. Some reaction products have been identified based on liquid chromatography combined with mass spectroscopy and theoretical calculations.