偏最小二乘法(partial least square,PLS)在内部采用Pearson系数度量自变量和因变量之间的相关性时提取出的成分不能确保解释性最强,并且PLS在将提取的成分进行线性回归时也无法真实反映变量间的函数关系.针对这些问题,该文提出了融入...偏最小二乘法(partial least square,PLS)在内部采用Pearson系数度量自变量和因变量之间的相关性时提取出的成分不能确保解释性最强,并且PLS在将提取的成分进行线性回归时也无法真实反映变量间的函数关系.针对这些问题,该文提出了融入距离方差和距离相关系数的偏最小二乘回归方法(DVDCCPLS).DVDCCPLS基于距离方差和距离相关系数提取距离成分,再将距离成分进行拟线性回归得到距离回归方程,通过模型求解方法将距离回归方程转换为原始数据的表达,最终得到结构简洁、精度较高的回归模型.该文分别采用麻杏石甘汤数据和UCI数据集测试DVDCCPLS的性能,并与其他5种经典的回归算法对比,结果表明:DVDCCPLS具有较好的回归效果和回归性能.展开更多
文摘偏最小二乘法(partial least square,PLS)在内部采用Pearson系数度量自变量和因变量之间的相关性时提取出的成分不能确保解释性最强,并且PLS在将提取的成分进行线性回归时也无法真实反映变量间的函数关系.针对这些问题,该文提出了融入距离方差和距离相关系数的偏最小二乘回归方法(DVDCCPLS).DVDCCPLS基于距离方差和距离相关系数提取距离成分,再将距离成分进行拟线性回归得到距离回归方程,通过模型求解方法将距离回归方程转换为原始数据的表达,最终得到结构简洁、精度较高的回归模型.该文分别采用麻杏石甘汤数据和UCI数据集测试DVDCCPLS的性能,并与其他5种经典的回归算法对比,结果表明:DVDCCPLS具有较好的回归效果和回归性能.