为了获得头型对入水空泡面闭合时间的影响以及某实际射弹模型入水过程中发展的空泡尺寸,通过VOF(Volume of fluid)方法和二维轴对称模型,在Fluent 15.0中嵌入用户自定义函数并应用动网格技术,对不同头型圆柱体和实际射弹模型以500.00m/...为了获得头型对入水空泡面闭合时间的影响以及某实际射弹模型入水过程中发展的空泡尺寸,通过VOF(Volume of fluid)方法和二维轴对称模型,在Fluent 15.0中嵌入用户自定义函数并应用动网格技术,对不同头型圆柱体和实际射弹模型以500.00m/s的速度匀速入水时产生的入水空泡进行了数值模拟。结果表明:圆头型圆柱体入水空泡发生面闭合的时间最早,其次是圆锥型圆柱体,平头型圆柱体入水空泡发生面闭合时间最晚;圆头型圆柱体诱导的气相速度最大,其次是圆锥型圆柱体,平头型圆柱体诱导的气相速度最小。模拟结果与文献结果一致性很好。实际射弹模型入水后,其空泡由前后两部分复合而成,数值结果和Logvinovich半经验公式的计算结果具有很好的一致性。该研究结果可以为高速物体入水超空泡的流动特性分析提供参考。展开更多
文摘为了获得头型对入水空泡面闭合时间的影响以及某实际射弹模型入水过程中发展的空泡尺寸,通过VOF(Volume of fluid)方法和二维轴对称模型,在Fluent 15.0中嵌入用户自定义函数并应用动网格技术,对不同头型圆柱体和实际射弹模型以500.00m/s的速度匀速入水时产生的入水空泡进行了数值模拟。结果表明:圆头型圆柱体入水空泡发生面闭合的时间最早,其次是圆锥型圆柱体,平头型圆柱体入水空泡发生面闭合时间最晚;圆头型圆柱体诱导的气相速度最大,其次是圆锥型圆柱体,平头型圆柱体诱导的气相速度最小。模拟结果与文献结果一致性很好。实际射弹模型入水后,其空泡由前后两部分复合而成,数值结果和Logvinovich半经验公式的计算结果具有很好的一致性。该研究结果可以为高速物体入水超空泡的流动特性分析提供参考。