The possible states in the flow past two identical cylinders in tandem arrangements are investigated. The effect of the gap (L/D = 1.5, 1.75 and 2) between the two cylinders at Reynolds number (Re = 52,639) is tak...The possible states in the flow past two identical cylinders in tandem arrangements are investigated. The effect of the gap (L/D = 1.5, 1.75 and 2) between the two cylinders at Reynolds number (Re = 52,639) is taken into consideration. The presence of three-dimensional flow structures was observed to include notable changes to the response of the flow as result of variation of cylinder separation. A number of planes (z/h = 0.02, 0.25, 0.5 and 0.98) were taken at 20 step times of interval 0.005 s. to cover the details of flow along the cylinders. CFD FLUENT program was used to detect the flow structure. It is observed that the gap between the two cylinders affects the flow regime, i.e., there is no distinct vortex shedding downstream of the first cylinder.展开更多
An experimental study was conducted to investigate the effects of relative rotation direction on the wake interferences among two tandemwind turbines models.While the oncoming flow conditions were kept in constant dur...An experimental study was conducted to investigate the effects of relative rotation direction on the wake interferences among two tandemwind turbines models.While the oncoming flow conditions were kept in constant during the experiments,turbine power outputs,wind loads acting on the turbines,and wake characteristics behind the turbines were compared quantitatively with turbine models in either co-rotating or counter-rotating configuration.The measurement results reveal that the turbines in counter-rotating would harvest more wind energy from the same oncoming wind,compared with the co-rotating case.While the recovery of the streamwise velocity deficits in the wake flows was found to be almost identical with the turbines operated in either co-rotating or counter-rotating,the significant azimuthal velocity generated in the wake flow behind the upstream turbine is believed to be the reason why the counter-rotating turbines would have a better power production performance.Since the azimuthal flow velocity in the wake flow was found to decrease monotonically with the increasing downstream distance,the benefits of the counter-rotating configuration were found to decrease gradually as the spacing between the tandem turbines increases.While the counter-rotating downstream turbine was found to produce up to 20%more power compared with that of co-rotating configuration with the turbine spacing being about 0.7D,the advantage was found to become almost negligible when the turbine spacing becomes greater than 6.5D.It suggests that the counter-rotating configuration design would be more beneficial to turbines in onshore wind farms due to the smaller turbine spacing(i.e.,~3 rotor diameters for onshore wind farms vs.~7 rotor diameters for offshore wind farms in the prevailing wind direction),especially for those turbines sited over complex terrains with the turbine spacing only about 1–2 rotor diameters.展开更多
A five-axis serial-parallel kinematic milling machine, the SPKM 165, is introduced. This machine consists of a three-degree of-freedom parallel module and a two-degree-of-freedom serial table. The SPKM 165 is capable ...A five-axis serial-parallel kinematic milling machine, the SPKM 165, is introduced. This machine consists of a three-degree of-freedom parallel module and a two-degree-of-freedom serial table. The SPKM 165 is capable of five-face machining. A discussion of the inverse kinematics of the five-axis control is provided. A dimensional synthesis procedure is presented in terms of motion/force transmissibility. Finite-element analysis was used to evaluate the stiffness of a CAD model before the machine was manufactured. Kinematic calibration was implemented to improve the accuracy of the end effector. The results of a calibration experiment are presented. The stiffness of the developed machine was then measured. Milling experiments were conducted, and the test piece showed that the developed machine has satisfactory performance.展开更多
Liquid chromatography coupled with the triple quadrupole mass spectrometry(LC-QQQ MS)technique is the most commonly used technique for quantitative analysis.It is widely used in pharmacology,targeted metabolomics,Chin...Liquid chromatography coupled with the triple quadrupole mass spectrometry(LC-QQQ MS)technique is the most commonly used technique for quantitative analysis.It is widely used in pharmacology,targeted metabolomics,Chinese medicine quality control,and other research fields.The technique monitors only characteristic precursors and product ions through multiple reaction monitoring(MRM)mode and can detect targeted molecules in complex matrix with high specificity and sensitivity.In the present study,a diarylamide derivative diuretic was used as an example to introduce the method establishment and parameter optimization of this liquid chromatography-mass spectrometry technique.Diuretic and its internal standard could be completely separated within a 5-min gradient,and the quantitative linear range was 1–1000 ng/mL with R2=0.9996 in practical samples.This study showed that the key to the method development for LC-QQQ MS was the selection of the LC mobile phase,the elution gradient,the declustering potential,and the collision energy of compounds in MS.展开更多
文摘The possible states in the flow past two identical cylinders in tandem arrangements are investigated. The effect of the gap (L/D = 1.5, 1.75 and 2) between the two cylinders at Reynolds number (Re = 52,639) is taken into consideration. The presence of three-dimensional flow structures was observed to include notable changes to the response of the flow as result of variation of cylinder separation. A number of planes (z/h = 0.02, 0.25, 0.5 and 0.98) were taken at 20 step times of interval 0.005 s. to cover the details of flow along the cylinders. CFD FLUENT program was used to detect the flow structure. It is observed that the gap between the two cylinders affects the flow regime, i.e., there is no distinct vortex shedding downstream of the first cylinder.
基金Supports from the Iowa Alliance for Wind Innovation and Novel Development (IAWIND)the National Science Foundation (NSF) (Grant No. CBET-1133751)
文摘An experimental study was conducted to investigate the effects of relative rotation direction on the wake interferences among two tandemwind turbines models.While the oncoming flow conditions were kept in constant during the experiments,turbine power outputs,wind loads acting on the turbines,and wake characteristics behind the turbines were compared quantitatively with turbine models in either co-rotating or counter-rotating configuration.The measurement results reveal that the turbines in counter-rotating would harvest more wind energy from the same oncoming wind,compared with the co-rotating case.While the recovery of the streamwise velocity deficits in the wake flows was found to be almost identical with the turbines operated in either co-rotating or counter-rotating,the significant azimuthal velocity generated in the wake flow behind the upstream turbine is believed to be the reason why the counter-rotating turbines would have a better power production performance.Since the azimuthal flow velocity in the wake flow was found to decrease monotonically with the increasing downstream distance,the benefits of the counter-rotating configuration were found to decrease gradually as the spacing between the tandem turbines increases.While the counter-rotating downstream turbine was found to produce up to 20%more power compared with that of co-rotating configuration with the turbine spacing being about 0.7D,the advantage was found to become almost negligible when the turbine spacing becomes greater than 6.5D.It suggests that the counter-rotating configuration design would be more beneficial to turbines in onshore wind farms due to the smaller turbine spacing(i.e.,~3 rotor diameters for onshore wind farms vs.~7 rotor diameters for offshore wind farms in the prevailing wind direction),especially for those turbines sited over complex terrains with the turbine spacing only about 1–2 rotor diameters.
基金supported in part by the National Natural Science Foundation of China (Grant No. 51075222)the Fund of State Key Laboratory of Tribology (Grant No. SKLT10C02)
文摘A five-axis serial-parallel kinematic milling machine, the SPKM 165, is introduced. This machine consists of a three-degree of-freedom parallel module and a two-degree-of-freedom serial table. The SPKM 165 is capable of five-face machining. A discussion of the inverse kinematics of the five-axis control is provided. A dimensional synthesis procedure is presented in terms of motion/force transmissibility. Finite-element analysis was used to evaluate the stiffness of a CAD model before the machine was manufactured. Kinematic calibration was implemented to improve the accuracy of the end effector. The results of a calibration experiment are presented. The stiffness of the developed machine was then measured. Milling experiments were conducted, and the test piece showed that the developed machine has satisfactory performance.
基金National Natural Science Foundation of China(Grant No.22004004 and 81620108029).
文摘Liquid chromatography coupled with the triple quadrupole mass spectrometry(LC-QQQ MS)technique is the most commonly used technique for quantitative analysis.It is widely used in pharmacology,targeted metabolomics,Chinese medicine quality control,and other research fields.The technique monitors only characteristic precursors and product ions through multiple reaction monitoring(MRM)mode and can detect targeted molecules in complex matrix with high specificity and sensitivity.In the present study,a diarylamide derivative diuretic was used as an example to introduce the method establishment and parameter optimization of this liquid chromatography-mass spectrometry technique.Diuretic and its internal standard could be completely separated within a 5-min gradient,and the quantitative linear range was 1–1000 ng/mL with R2=0.9996 in practical samples.This study showed that the key to the method development for LC-QQQ MS was the selection of the LC mobile phase,the elution gradient,the declustering potential,and the collision energy of compounds in MS.