The dynamic recrystallization refinement of magnesium alloy AZ80 by compression tests was studied,and its effect on the mechanical properties was investigated.It is observed that the microstructure of the as-cast bill...The dynamic recrystallization refinement of magnesium alloy AZ80 by compression tests was studied,and its effect on the mechanical properties was investigated.It is observed that the microstructure of the as-cast billet with grain size of 240μm becomes refined to about 120,110,94 and 50μm after upsetting at 350℃ under strain rates of 0.01,0.1,1 and 10 s -1 respectively.The changes in the mechanical properties according to grain size show that yield strength significantly decreases with grain size increasing,while strain hardening exponent and micro hardness increase very sharply.Further,the grain size vs strain rate and change in Vickers micro hardness according to the various strain rates show that grain size and micro hardness decrease with strain rate increasing.展开更多
Orphanin FQ(OFQ) or nociceptin is a novel neuropeptide consisting of 17 amino acids. This peptide has a primary structure reminiscent of that of opioid peptide but exhibits an opposite effect to make animals hyperre...Orphanin FQ(OFQ) or nociceptin is a novel neuropeptide consisting of 17 amino acids. This peptide has a primary structure reminiscent of that of opioid peptide but exhibits an opposite effect to make animals hyperreactive. The effect of this new peptide on cardiovascular function are not completely known. The present study was conducted to investigate the effect of intravenous bolus injection of orphanin FQ on mean arterial blood presure (MABP) in conscious stroke-prone spontaneously hypertensive rats (SHRsp). Adult male SHRsp and Wistar normotensive rats (250~300 g body weight, 2. 5~3 months old) were used in this study. The MABP was measured in the conscious state by a tail-cuff method. In SHRsp model, intravenous bolus injection of orphanin FQ or Tyr1-orphanin FQ (0. 5 mg/kg) induced a prolonged and marked reduc- tion in MABP. The maximum changes in MABP were -30. 2±4. 2 mmHg by orphanin FQ and -28. 2± 4. 7 mmHg by Tyr1-orphanin FQ at 10 min after administration,and this effect lasted over 30 min. The Phe1→Tyr substitution in orphanin FQ was found to retain almost fully hypotensive activity. Pretreatment of SHRsp with naloxone-HCI(60 μg/kg), 5 min before the injection of orphanin FQ, did not block the hy- potensive effect of orphanin FQ. Therefore, opioid receptors could not account for the hypotensive effect of orphanin FQ in SHRsp. In Wistar rats, intravenous bolus injection of the same dose of orphanin FQ did not cause a change in MABP. These observations suggest that orphanin FQ is a novel hypotensive peptide and may have some role in the regulation of blood pressure in SHRsp, rather than in normotensive rats. The ex-act underlying mechanisms are waiting to be clarified.展开更多
The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator.The relationship between the true stress and t...The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator.The relationship between the true stress and the true strain at different temperatures and strain rates was studied with the deformation degree of 70%.The microstructures during the deformation process were characterized.The deformation mechanism and thixo-forming properties of the semi-solid alloys were analyzed.The results show that the homogeneous and non-dendrite microstructures of semi-solid 6061Al alloy manufactured by near-liquidus casting technology could be transformed into semi-solid state with the microstructure suitable for thixo-forming which are composed of near-spherical grains and liquid phase with eutectic composition through reheating process.The deformation temperature and strain rate affect the peak stress significantly rather than steady flow stress.The resistance to deformation in semi-solid state decreases with the increase of the deformation temperature and decrease of the strain rate.At steady thixotropic deformation stage, the thixotropic property is uniform, and the main deformation mechanism is the rotating or sliding between the solid particles and the plastic deformation of the solid particles.展开更多
Overheating of the engine, the transmission and the hydraulic device is a problem when the construction machinery works on plateau. To solve this problem, we proposed an electro-controlled hydraulic driving fan coolin...Overheating of the engine, the transmission and the hydraulic device is a problem when the construction machinery works on plateau. To solve this problem, we proposed an electro-controlled hydraulic driving fan cooling system (ECHDFCS). The system was applied to a 50-wheel loader. We carried out the coolant temperature simulation using fluid modeling software FLOWMASTER, followed by laboratory experiments and road tests. The results show that ECHDFCS can adjust the cooling capability of the system automatically based on machine heat dissipation requirements. The coolant temperature is consequently remained within an appropriate range. The simulation results are consistent with the experiment results when the experiment is performed on the plain, but are different from the road tests in some investigated parameters on the plateau.展开更多
AIM: To investigate the flow and mixing at the duodenal stump after gastric resection, a computer simulation was implemented. METHODS: Using the finite element method, two different Billroth fl procedure cases (A a...AIM: To investigate the flow and mixing at the duodenal stump after gastric resection, a computer simulation was implemented. METHODS: Using the finite element method, two different Billroth fl procedure cases (A and B) were modeled. Case A was defined with a shorter and almost straight duodenal section, while case B has a much longer and curved duodenal section. Velocity, pressure and food concentration distribution were determined and the numerical results were compared with experimental observations. RESULTS: The pressure distribution obtained by numerical simulation was in the range of the recorded experimental results. Case A had a more favorable pressure distribution in comparison with case B. However, case B had better performance in terms of food transport because of more continual food distribution, as well as better emptying of the duodena section. CONCLUSION: This study offers insight into the transport process within the duodenal stump section after surgical intervention, which can be useful for future patient-specific predictions of a surgical outcome.展开更多
The centrifugal air compressor outlet pipeline vibration was not decreased after barrel viscous dampers were installed in a petrochemical plant in Tianjin.A pipeline-damper experiment apparatus was built for studying ...The centrifugal air compressor outlet pipeline vibration was not decreased after barrel viscous dampers were installed in a petrochemical plant in Tianjin.A pipeline-damper experiment apparatus was built for studying the influence factors of the barrel viscous damper and pipe hoop in pipeline vibration reduction.The performance of the damper under different frequency and amplitude was researched respectively,the results showed that damping effect dependsed mainly on frequency and was not related to amplitude.Damper will fail when its vibration frequency exceeds its limit working frequency which was 40 Hz in test.The mechanical properties and energy dissipation were analyzed by using the Maxwell model,which explains experimental results well.According to damping effect and calculation of stiffness with ANSYS in different hoop width,hoop stiffness should match pipe stiffness and keep uniform along transfer path.Damping effect will get worse when local stiffness is too small or too large.Finally,the outlet pipeline vibration was decreased by 70%after using appropriate pipe hoop width and replacing the original damping liquid.展开更多
LS-SVM (least squares support vector machines) are a class of kemel machines emphasizing on primal-dual aspects in a constrained optimization framework. LS-SVMs aim at extending methodologies typical of classical su...LS-SVM (least squares support vector machines) are a class of kemel machines emphasizing on primal-dual aspects in a constrained optimization framework. LS-SVMs aim at extending methodologies typical of classical support vector machines for problems beyond classification and regression. This paper describes a methodology that was developed for the prediction of the critical flashover voltage of polluted insulators by using a LS-SVM. The methodology uses as input variables characteristics of the insulator such as diameter, height, creepage distance, form factor and equivalent salt deposit density. The estimation offlashover performance of polluted insulators is based on field experience and laboratory tests are invaluable as they significantly reduce the time and labour involved in insulators design and selection. The majority of the variables to be predicted are dependent upon several independent variables. The results from this work are useful to predict the contamination severity, critical flashover voltage as a function of contamination severity, arc length, and especially to predict the flashover voltage. The validity of the approach was examined by testing several insulators with different geometries. Moreover, the performance of the proposed approach with other intelligence method based on ANN (artificial neural networks) is compared. It can be concluded that the LS-SVM approach has better generalization ability that assist the measurement and monitoring of contamination severity, flashover voltage and leakage current.展开更多
A centrifugal compressor with a vaneless diffuser was studied experimentally and numerically. The main target of the study was to analyze the volute flow. Two different volute geometries was studied. The numerical sol...A centrifugal compressor with a vaneless diffuser was studied experimentally and numerically. The main target of the study was to analyze the volute flow. Two different volute geometries was studied. The numerical solution was done by using a steady-state RANS code at both design and off-design conditions. Both calculated and measured pressure and velocity distributions are presented.展开更多
Basing on a prototype of DCA airfoil and axial displacement overlap of 10% chord,seven kinds of tangential displacements are taken to simulate the flow conditions in tandem cascade with numerical methods to select a b...Basing on a prototype of DCA airfoil and axial displacement overlap of 10% chord,seven kinds of tangential displacements are taken to simulate the flow conditions in tandem cascade with numerical methods to select a better geometry with higher performance.The configuration with tangential displacement b/t=0.83 would gain better flow performance than the others.On this basis,two configurations with tangential displacement b/t=0.67 and 0.83 among several configurations are chosen to take into experimental investigations by using TR-PIV system to capture the flow velocity instantaneously.The configuration with b/t=0.83 is observed a better flow field performance than b/t=0.67.Its injection flow in the gap zone is much stronger,wake zone area of the front and rear blade is smaller and the stream flow is more improved.It shows that the flow performance in experimental investigation is quite in the same trend as the numerical results predict.展开更多
High flow rate aeroengines typically employ axial flow compressors, where aerodynamic loss is predominantly due to secondary flow features such as tip leakage and comer vortices. In very high altitude missions, turbo-...High flow rate aeroengines typically employ axial flow compressors, where aerodynamic loss is predominantly due to secondary flow features such as tip leakage and comer vortices. In very high altitude missions, turbo- machinery operates at low density ambient atmosphere, and the recent trend toward more compact engine core inevitably leads to the reduction of blade size, which in turn increases the relative height of the blade tip clearance. Low Reynolds number fiowfield as a result of these two factors amplifies the relative importance of secondary flow effects. This paper focuses on the behavior of tip leakage flow, investigating by use of both experimental and numerical approaches. In order to understand the complex secondary flow behavior, cascade tests are usually conducted using intrusive probes to determine the loss. However relatively few experimental studies are pub- lished on tip leakage flows which take into account the interaction between a rotating blade row and its casing wall. Hence a new linear cascade facility has been designed with a moving belt casing in order to reproduce more realistic flowfield as encountered by a rotating compressor row. Numerical simulations were also performed to aid in the understanding of the complex flow features. The experimental results indicate a significant difference in the flowfield when the moving belt casing is present. The numerical simulations reveal that the leakage vortex is pulled by the shearing motion of the endwall toward the pressure side of the adjacent blade. The results highlight the importance of casing wall relative motion in analyzing leakage flow effects.展开更多
For convenience of both measurement and adjusting the clearance size and incidence, the current research is mainly conducted by experiments on an axial compressor linear cascade. The characteristics and the condition ...For convenience of both measurement and adjusting the clearance size and incidence, the current research is mainly conducted by experiments on an axial compressor linear cascade. The characteristics and the condition under which the unsteadiness of tip leakage flow would occur were investigated by dynamic measuring in different clearances, inlet velocities and incidences. From the experiment it is found that increasing tip clearance size or reducing rotor tip incidence can affect the strength of the tip clearance flow. Then the experimental results also indicate the tip leakage shows instability in certain conditions, and the frequency of unsteadiness is great influenced by inflow angle. The condition of occurrence of tip leakage flow unsteadiness is when the leakage flow is strong enough to reach the pressure side of the adjacent blade. The main cause of tip leakage flow unsteadiness is the tip blade loading.展开更多
The volute of a centrifugal compressor causes a non-uniform pressure distribution which leads to a radial force on the impeller. This force was measured using magnetic bearings. In addition, the radial force was estim...The volute of a centrifugal compressor causes a non-uniform pressure distribution which leads to a radial force on the impeller. This force was measured using magnetic bearings. In addition, the radial force was estimated using the static pressure distribution measured at the impeller outlet. The impeller force was found to be the highest at choke, the lowest at the design flow and moderate at stall. The radial force determined from the pressure measurements was only slightly different from the force obtained from the bearing measurements. The rotational speed was seen to affect the force to some extent.展开更多
It is well known that the non-uniform tip geometry is a promising passive flow control technique in turbomachinery.However,detailed investigation of its effects on the unsteady flow field of turbomachinery is rare in ...It is well known that the non-uniform tip geometry is a promising passive flow control technique in turbomachinery.However,detailed investigation of its effects on the unsteady flow field of turbomachinery is rare in the existiug hteratures.This paper presents an experimental investigation of effects of suction side squealer tip configuration on both the steady and unsteady flow field of an isolated compressor rotor.The flow field at 10%chord downstream from the trailing edge was measured using a mini five-hole probe.Meanwhile,the unsteady flow field inside the passage was investigated using stereo particle image velocimetry(SPIV).The steady results show that the SSQ tip configuration exerts positive effect on the static pressure rise performance of this compressor,and the radial equilibrium at the rotor outlet is obviously rearranged.The SSQ tip configuration would create a stronger tip leakage vortex at the formation phase,and it experiences a faster dissipation process around the rear chord.Also,the splitting process of the tip leakage vortex is severer,which is the main cause of the relatively higher probability of the presence of the streamwise reverse flow.The quantitatively analysis of the tip leakage vortex indicates that the velocity loss inside the blockage region is direct response of the evolutionary procedure of the tip leakage vortex.It keeps increasing until the end of the splitting process.Although the blockage coefficient grows sustainably,the velocity loss will reduce once the turbulent mixing procedure is dominant.展开更多
Aircraft engines deteriorate during continuous operation under the action of external factors including fouling, corrosion, and abrasion. The increased surface roughness of compressor passage walls limits airflow and ...Aircraft engines deteriorate during continuous operation under the action of external factors including fouling, corrosion, and abrasion. The increased surface roughness of compressor passage walls limits airflow and leads to flow loss. However, the partial increase of roughness may also restrain flow separation and reduce flow loss. It is necessary to explore methods that will lower compressor deterioration, thereby improving the overall performance. The experimental research on the effects of surface roughness on highly loaded compressor cascade aerodynamics has been conducted in a low-speed linear cascade wind tunnel. The different levels of roughness are arranged on the suction surface and pressure surface, respectively. Ink-trace flow visualization has been used to measure the flow field on the walls of cascades, and a five-hole probe has been traversed across one pitch at the outlet. By comparing the total pressure loss coefficient, the distributions of the secondary-flow speed vector, and flow fields of various cases, the effects of surface roughness on the aerodynamics of a highly loaded compressor cascade are analyzed and discussed. The results show that adding surface roughness on the suction surface and pressure surface make the loss decrease in most cases. Increasing the surface roughness on the suction surface causes reduced flow speed near the blade, which helps to decrease mixing loss at the cascades outlet. Meanwhile, adding surface roughness on the suction surface restrains flow separation, leading to less flow loss. Various levels of surface roughness mostly weaken the flow turning capacity to various degrees, except in specific cases.展开更多
An experimental measurement and calculation method which consist of thermal response model, convergence criteria and control algorithms, is proposed in this paper for the determination of heat flux in a scramjet combu...An experimental measurement and calculation method which consist of thermal response model, convergence criteria and control algorithms, is proposed in this paper for the determination of heat flux in a scramjet combus- tot. Numerical simulations are done to evaluate the effectiveness of the proposed method, and experiments are made in the direct-connect hydrocarbon fueled scramjet combustor of Mach-6 flight for different equivalence ra- tios. The distribution of heat flux along the axial and circumferential directions can be obtained using the pro- posed method. The distribution of heat flux is uneven which is caused by the aerodynamic heating, combustion heat release and changes of section area, and the peak heat flux can be more than 2MW/m^2 during the experi- ments. Heat flux increases with the increase in equivalence ratio for the same Mach number. And axial distribu- tion of heat flux is uniform for different equivalence ratios. In addition, the combustion heat release area of the combustion chamber can therefore be concluded which is useful for guiding the structural design of the thermal protection system.展开更多
Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperat...Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy(AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.展开更多
基金Project(cstc2009aa3012-1)supported by Science and Technology Committee of Chongqing,ChinaProject(20100470813)supported by China Postdoctoral Science FoundationProject(2010011511)supported by Sharing Fund of Chongqing University’s Large-Scale Equipment,China
文摘The dynamic recrystallization refinement of magnesium alloy AZ80 by compression tests was studied,and its effect on the mechanical properties was investigated.It is observed that the microstructure of the as-cast billet with grain size of 240μm becomes refined to about 120,110,94 and 50μm after upsetting at 350℃ under strain rates of 0.01,0.1,1 and 10 s -1 respectively.The changes in the mechanical properties according to grain size show that yield strength significantly decreases with grain size increasing,while strain hardening exponent and micro hardness increase very sharply.Further,the grain size vs strain rate and change in Vickers micro hardness according to the various strain rates show that grain size and micro hardness decrease with strain rate increasing.
文摘Orphanin FQ(OFQ) or nociceptin is a novel neuropeptide consisting of 17 amino acids. This peptide has a primary structure reminiscent of that of opioid peptide but exhibits an opposite effect to make animals hyperreactive. The effect of this new peptide on cardiovascular function are not completely known. The present study was conducted to investigate the effect of intravenous bolus injection of orphanin FQ on mean arterial blood presure (MABP) in conscious stroke-prone spontaneously hypertensive rats (SHRsp). Adult male SHRsp and Wistar normotensive rats (250~300 g body weight, 2. 5~3 months old) were used in this study. The MABP was measured in the conscious state by a tail-cuff method. In SHRsp model, intravenous bolus injection of orphanin FQ or Tyr1-orphanin FQ (0. 5 mg/kg) induced a prolonged and marked reduc- tion in MABP. The maximum changes in MABP were -30. 2±4. 2 mmHg by orphanin FQ and -28. 2± 4. 7 mmHg by Tyr1-orphanin FQ at 10 min after administration,and this effect lasted over 30 min. The Phe1→Tyr substitution in orphanin FQ was found to retain almost fully hypotensive activity. Pretreatment of SHRsp with naloxone-HCI(60 μg/kg), 5 min before the injection of orphanin FQ, did not block the hy- potensive effect of orphanin FQ. Therefore, opioid receptors could not account for the hypotensive effect of orphanin FQ in SHRsp. In Wistar rats, intravenous bolus injection of the same dose of orphanin FQ did not cause a change in MABP. These observations suggest that orphanin FQ is a novel hypotensive peptide and may have some role in the regulation of blood pressure in SHRsp, rather than in normotensive rats. The ex-act underlying mechanisms are waiting to be clarified.
基金Project(50874049) supported by the National Natural Science Foundation of ChinaProject(2008DFB50020) supported by International Science and Technology Cooperation of Ministry of Science and Technology of China
文摘The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator.The relationship between the true stress and the true strain at different temperatures and strain rates was studied with the deformation degree of 70%.The microstructures during the deformation process were characterized.The deformation mechanism and thixo-forming properties of the semi-solid alloys were analyzed.The results show that the homogeneous and non-dendrite microstructures of semi-solid 6061Al alloy manufactured by near-liquidus casting technology could be transformed into semi-solid state with the microstructure suitable for thixo-forming which are composed of near-spherical grains and liquid phase with eutectic composition through reheating process.The deformation temperature and strain rate affect the peak stress significantly rather than steady flow stress.The resistance to deformation in semi-solid state decreases with the increase of the deformation temperature and decrease of the strain rate.At steady thixotropic deformation stage, the thixotropic property is uniform, and the main deformation mechanism is the rotating or sliding between the solid particles and the plastic deformation of the solid particles.
基金Funded by the Innovation Foundation of Guangzhou, P. R. China (No. 2005V42C0021)
文摘Overheating of the engine, the transmission and the hydraulic device is a problem when the construction machinery works on plateau. To solve this problem, we proposed an electro-controlled hydraulic driving fan cooling system (ECHDFCS). The system was applied to a 50-wheel loader. We carried out the coolant temperature simulation using fluid modeling software FLOWMASTER, followed by laboratory experiments and road tests. The results show that ECHDFCS can adjust the cooling capability of the system automatically based on machine heat dissipation requirements. The coolant temperature is consequently remained within an appropriate range. The simulation results are consistent with the experiment results when the experiment is performed on the plain, but are different from the road tests in some investigated parameters on the plateau.
基金Supported by The Ministry of Science of Serbia with the grants OI144028 and TR12007
文摘AIM: To investigate the flow and mixing at the duodenal stump after gastric resection, a computer simulation was implemented. METHODS: Using the finite element method, two different Billroth fl procedure cases (A and B) were modeled. Case A was defined with a shorter and almost straight duodenal section, while case B has a much longer and curved duodenal section. Velocity, pressure and food concentration distribution were determined and the numerical results were compared with experimental observations. RESULTS: The pressure distribution obtained by numerical simulation was in the range of the recorded experimental results. Case A had a more favorable pressure distribution in comparison with case B. However, case B had better performance in terms of food transport because of more continual food distribution, as well as better emptying of the duodena section. CONCLUSION: This study offers insight into the transport process within the duodenal stump section after surgical intervention, which can be useful for future patient-specific predictions of a surgical outcome.
基金Supported by the National Basic Research Program of China(No.2012CB026000)the Beijing Education Commission Special Fund andDoctoral Degree Fund(No.20110010110009)
文摘The centrifugal air compressor outlet pipeline vibration was not decreased after barrel viscous dampers were installed in a petrochemical plant in Tianjin.A pipeline-damper experiment apparatus was built for studying the influence factors of the barrel viscous damper and pipe hoop in pipeline vibration reduction.The performance of the damper under different frequency and amplitude was researched respectively,the results showed that damping effect dependsed mainly on frequency and was not related to amplitude.Damper will fail when its vibration frequency exceeds its limit working frequency which was 40 Hz in test.The mechanical properties and energy dissipation were analyzed by using the Maxwell model,which explains experimental results well.According to damping effect and calculation of stiffness with ANSYS in different hoop width,hoop stiffness should match pipe stiffness and keep uniform along transfer path.Damping effect will get worse when local stiffness is too small or too large.Finally,the outlet pipeline vibration was decreased by 70%after using appropriate pipe hoop width and replacing the original damping liquid.
文摘LS-SVM (least squares support vector machines) are a class of kemel machines emphasizing on primal-dual aspects in a constrained optimization framework. LS-SVMs aim at extending methodologies typical of classical support vector machines for problems beyond classification and regression. This paper describes a methodology that was developed for the prediction of the critical flashover voltage of polluted insulators by using a LS-SVM. The methodology uses as input variables characteristics of the insulator such as diameter, height, creepage distance, form factor and equivalent salt deposit density. The estimation offlashover performance of polluted insulators is based on field experience and laboratory tests are invaluable as they significantly reduce the time and labour involved in insulators design and selection. The majority of the variables to be predicted are dependent upon several independent variables. The results from this work are useful to predict the contamination severity, critical flashover voltage as a function of contamination severity, arc length, and especially to predict the flashover voltage. The validity of the approach was examined by testing several insulators with different geometries. Moreover, the performance of the proposed approach with other intelligence method based on ANN (artificial neural networks) is compared. It can be concluded that the LS-SVM approach has better generalization ability that assist the measurement and monitoring of contamination severity, flashover voltage and leakage current.
文摘A centrifugal compressor with a vaneless diffuser was studied experimentally and numerically. The main target of the study was to analyze the volute flow. Two different volute geometries was studied. The numerical solution was done by using a steady-state RANS code at both design and off-design conditions. Both calculated and measured pressure and velocity distributions are presented.
文摘Basing on a prototype of DCA airfoil and axial displacement overlap of 10% chord,seven kinds of tangential displacements are taken to simulate the flow conditions in tandem cascade with numerical methods to select a better geometry with higher performance.The configuration with tangential displacement b/t=0.83 would gain better flow performance than the others.On this basis,two configurations with tangential displacement b/t=0.67 and 0.83 among several configurations are chosen to take into experimental investigations by using TR-PIV system to capture the flow velocity instantaneously.The configuration with b/t=0.83 is observed a better flow field performance than b/t=0.67.Its injection flow in the gap zone is much stronger,wake zone area of the front and rear blade is smaller and the stream flow is more improved.It shows that the flow performance in experimental investigation is quite in the same trend as the numerical results predict.
文摘High flow rate aeroengines typically employ axial flow compressors, where aerodynamic loss is predominantly due to secondary flow features such as tip leakage and comer vortices. In very high altitude missions, turbo- machinery operates at low density ambient atmosphere, and the recent trend toward more compact engine core inevitably leads to the reduction of blade size, which in turn increases the relative height of the blade tip clearance. Low Reynolds number fiowfield as a result of these two factors amplifies the relative importance of secondary flow effects. This paper focuses on the behavior of tip leakage flow, investigating by use of both experimental and numerical approaches. In order to understand the complex secondary flow behavior, cascade tests are usually conducted using intrusive probes to determine the loss. However relatively few experimental studies are pub- lished on tip leakage flows which take into account the interaction between a rotating blade row and its casing wall. Hence a new linear cascade facility has been designed with a moving belt casing in order to reproduce more realistic flowfield as encountered by a rotating compressor row. Numerical simulations were also performed to aid in the understanding of the complex flow features. The experimental results indicate a significant difference in the flowfield when the moving belt casing is present. The numerical simulations reveal that the leakage vortex is pulled by the shearing motion of the endwall toward the pressure side of the adjacent blade. The results highlight the importance of casing wall relative motion in analyzing leakage flow effects.
基金supported by the National Natural Sci-ence Foundation of China under Grant No.51106174
文摘For convenience of both measurement and adjusting the clearance size and incidence, the current research is mainly conducted by experiments on an axial compressor linear cascade. The characteristics and the condition under which the unsteadiness of tip leakage flow would occur were investigated by dynamic measuring in different clearances, inlet velocities and incidences. From the experiment it is found that increasing tip clearance size or reducing rotor tip incidence can affect the strength of the tip clearance flow. Then the experimental results also indicate the tip leakage shows instability in certain conditions, and the frequency of unsteadiness is great influenced by inflow angle. The condition of occurrence of tip leakage flow unsteadiness is when the leakage flow is strong enough to reach the pressure side of the adjacent blade. The main cause of tip leakage flow unsteadiness is the tip blade loading.
文摘The volute of a centrifugal compressor causes a non-uniform pressure distribution which leads to a radial force on the impeller. This force was measured using magnetic bearings. In addition, the radial force was estimated using the static pressure distribution measured at the impeller outlet. The impeller force was found to be the highest at choke, the lowest at the design flow and moderate at stall. The radial force determined from the pressure measurements was only slightly different from the force obtained from the bearing measurements. The rotational speed was seen to affect the force to some extent.
基金co-supported by the National Natural Science Foundation of China(Grant No.51161130525/No.51136003)the 111Project(No.B07009)
文摘It is well known that the non-uniform tip geometry is a promising passive flow control technique in turbomachinery.However,detailed investigation of its effects on the unsteady flow field of turbomachinery is rare in the existiug hteratures.This paper presents an experimental investigation of effects of suction side squealer tip configuration on both the steady and unsteady flow field of an isolated compressor rotor.The flow field at 10%chord downstream from the trailing edge was measured using a mini five-hole probe.Meanwhile,the unsteady flow field inside the passage was investigated using stereo particle image velocimetry(SPIV).The steady results show that the SSQ tip configuration exerts positive effect on the static pressure rise performance of this compressor,and the radial equilibrium at the rotor outlet is obviously rearranged.The SSQ tip configuration would create a stronger tip leakage vortex at the formation phase,and it experiences a faster dissipation process around the rear chord.Also,the splitting process of the tip leakage vortex is severer,which is the main cause of the relatively higher probability of the presence of the streamwise reverse flow.The quantitatively analysis of the tip leakage vortex indicates that the velocity loss inside the blockage region is direct response of the evolutionary procedure of the tip leakage vortex.It keeps increasing until the end of the splitting process.Although the blockage coefficient grows sustainably,the velocity loss will reduce once the turbulent mixing procedure is dominant.
基金Financially supported from"National Natural Science Foundation of China"(Grant No.51206035)"the Foundation for Innovative Research Groups of the National Natural Science Foundation of China"(Grant No.51121004)
文摘Aircraft engines deteriorate during continuous operation under the action of external factors including fouling, corrosion, and abrasion. The increased surface roughness of compressor passage walls limits airflow and leads to flow loss. However, the partial increase of roughness may also restrain flow separation and reduce flow loss. It is necessary to explore methods that will lower compressor deterioration, thereby improving the overall performance. The experimental research on the effects of surface roughness on highly loaded compressor cascade aerodynamics has been conducted in a low-speed linear cascade wind tunnel. The different levels of roughness are arranged on the suction surface and pressure surface, respectively. Ink-trace flow visualization has been used to measure the flow field on the walls of cascades, and a five-hole probe has been traversed across one pitch at the outlet. By comparing the total pressure loss coefficient, the distributions of the secondary-flow speed vector, and flow fields of various cases, the effects of surface roughness on the aerodynamics of a highly loaded compressor cascade are analyzed and discussed. The results show that adding surface roughness on the suction surface and pressure surface make the loss decrease in most cases. Increasing the surface roughness on the suction surface causes reduced flow speed near the blade, which helps to decrease mixing loss at the cascades outlet. Meanwhile, adding surface roughness on the suction surface restrains flow separation, leading to less flow loss. Various levels of surface roughness mostly weaken the flow turning capacity to various degrees, except in specific cases.
文摘An experimental measurement and calculation method which consist of thermal response model, convergence criteria and control algorithms, is proposed in this paper for the determination of heat flux in a scramjet combus- tot. Numerical simulations are done to evaluate the effectiveness of the proposed method, and experiments are made in the direct-connect hydrocarbon fueled scramjet combustor of Mach-6 flight for different equivalence ra- tios. The distribution of heat flux along the axial and circumferential directions can be obtained using the pro- posed method. The distribution of heat flux is uneven which is caused by the aerodynamic heating, combustion heat release and changes of section area, and the peak heat flux can be more than 2MW/m^2 during the experi- ments. Heat flux increases with the increase in equivalence ratio for the same Mach number. And axial distribu- tion of heat flux is uniform for different equivalence ratios. In addition, the combustion heat release area of the combustion chamber can therefore be concluded which is useful for guiding the structural design of the thermal protection system.
基金supported by the National Natural Science Foundation of China(61175103,61375107,61327014,61433017)the Research Fund of the State Key Laboratory of Robotics(2014-Z07)CAS FEA International Partnership Program for Creative Research Teams
文摘Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy(AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.