AIM To investigate the mRNA expression of gammaaminobutyric acid A (GABAA) receptor subunits α1,β1, γ2in different parts of the brain of rats with hepaticencephalopathy.METHODS: Twelve adult male Sprague-Dawley rat...AIM To investigate the mRNA expression of gammaaminobutyric acid A (GABAA) receptor subunits α1,β1, γ2in different parts of the brain of rats with hepaticencephalopathy.METHODS: Twelve adult male Sprague-Dawley rats were randomly divided into two groups: (1) hepatic encephalopathy model group (n = 6), which was induced by intraperitoneal injection of thioacetamide (TAA, 350 mg/kg) for threeconsecutive days; (2) control group (n = 6), in which the rats were treated with same dose of normal saline solution. After the freeze slice of cerebrum was made,in situ hybridization was used to detect the mRNA of GABAA receptor subunits α1, β1, and γ2 in rat cerebral cortex, basal nuclei, substantia nigra and hippocampi. Image data were collected and analyzed quantitatively by QWin550CWmodel image signal gather and analysis system. RESULTS: In rats with hepatic encephalopathy, mRNA expression levels of GABAA receptor subunits α1, β1 increased significantly in basal nuclei, substantia nigra pars compacta, substantia nigra pars reticularis and hippocampi (144.7±15.67/184.14±4.41, 60.61±33.66/113.07±32.44,87.71± 21.25/128.40±18.85, 122.34±5.56/161.60±4.56,123.29±5.21/140.65±4.15, 123.40±4.42/140.09±4.52,124.76±4.18/140.09±4.12, 141.62±15.09/182.80 ±5.20,69.13±30.74/134.21±43.76, 87.87±25.16/151.01±19.49,122.14±6.30/162.33±3.92, 122.81±5.09/137.19±7.12,123.00±4.63/138.11±5.92, 125.75 ±2.43/138.81±6.10,P<0.01), but did not change in the cerebral cortex compared to the control group. Similar changes were found in the mRNA expression levels of GABAA receptor subunit γ2,which increased significantly in basal nuclei, substantia nigra pars compacta, substantia nigra pars reticularis (136.81±26.41/167.97±16.23, 51.00±36.14/113.18±36.52, 86.35±20.30/126.90±19.74, P<0.01), CA1 of hippocampal (162.15±9.05/178.62±6.45, P<0.05), and no changes were found in the cerebral cortex and CA2, CA3, CA4 of hippocampi.CONCLUSION: In rats with hepatic encephalopathy, mRNA expression levels of GABAA receptor subunits α1,β1, γ2 increase significantly in basal nuclei, substantia nigra and hippocampi, suggesting that the changes of mRNA expression levels in GABAA receptor subunits may contribute to the pathogenesis of hepatic encephalopathy.展开更多
AIM: To observe the expressions of early growth response factor-1 (Egr-1) and tissue factor (TF) in rats with cerulein-induced acute pancreatitis and to explore its significance. METHODS: A large dose of cerulei...AIM: To observe the expressions of early growth response factor-1 (Egr-1) and tissue factor (TF) in rats with cerulein-induced acute pancreatitis and to explore its significance. METHODS: A large dose of cerulein was used to create the experimental acute pancreatitis model in rats. The changes of Egr-1 mRNA and protein in rats were observed during 30 min to 4 h after the treatment and immunohistochemical method was used to observe the localized expression of Egr-1 in tissues. In addition to the mRNA expression of Egr-1 target gene, TF was also observed. A blank control group, and a bombesinadministered group were used for comparison. RESULTS: Alter the stimulation of a large dose of cerulein, the rats showed typical inflammatory changes of acute pancreatitis. Thirty minutes alter the stimulation, the mRNA expression of Egr-1 in the pancreatic tissue reached its peak and then declined, while the expression of Egr-1 protein reached its peak 2 h after the stimulation. Histologically, 2 h after the stimulation, almost all pancreatic acinar cells had the expression of Egr-1 protein, which was focused in the nuclei. The mRNA expression of TF occurred 1 h after the stimulation and gradually increased within 4 h. However, a large dose of bombesin only stimulated the pancreatic tissue to produce a little mRNA expression of Egr-1 and no mRNA expression of Egr-1 protein and TF. CONCLUSION: Egr-1 as a pro-inflammatory transcription factor may play an important role in the pathogenesis of acute pancreatitis by modulating the expression of TF.展开更多
Objective: To investigate the specific blockage effect of individual antisense RNA on mutant p53 gene in vitro. Methods: The single strand antisense transcription system containing mt-p53 exon 8 sequence (pGEM3zf(...Objective: To investigate the specific blockage effect of individual antisense RNA on mutant p53 gene in vitro. Methods: The single strand antisense transcription system containing mt-p53 exon 8 sequence (pGEM3zf(+/-)p53exon8) was constructed. The ligation of antisense RNAwith mt-p53 gene was confirmed by in situ hybridization; MDA-MB-231 human breast cancer cells were transfected with ASp53exon8'RNA cotionic liposome-mediated. Expression of mt-p53 protein was examined by immunocytochemical staining and Western blot. Cell proliferation was evaluated by MTT assay; Cell cycle distribution was determined by flow cytometry (FCM); Apoptosis was observed by TUNEL. Results: In transfected MDA-MB-231 cells, hybridization signals were observed in cytoplasm. ASp53exon8'RNA transfection induced inhibition of cell proliferation, G2/M phase arrest and increasing apoptotic rates. In addition, expression of p53 protein was down-regulated. Conclusion: pGEM3zf(+/-)p53exon8 was well constructed and ASp53exon8'RNA can block mt-p53 gene expression specifically and then inhibit MDA-MB-231 cell proliferation in vitro, which may serve as therapeutic means for human malignancy.展开更多
Selecting differentially expressed genes(DEGs) is one of the most important tasks in microarray applications for studying multi-factor diseases including cancers.However,the small samples typically used in current mic...Selecting differentially expressed genes(DEGs) is one of the most important tasks in microarray applications for studying multi-factor diseases including cancers.However,the small samples typically used in current microarray studies may only partially reflect the widely altered gene expressions in complex diseases,which would introduce low reproducibility of gene lists selected by statistical methods.Here,by analyzing seven cancer datasets,we showed that,in each cancer,a wide range of functional modules have altered gene expressions and thus have high disease classification abilities.The results also showed that seven modules are shared across diverse cancers,suggesting hints about the common mechanisms of cancers.Therefore,instead of relying on a few individual genes whose selection is hardly reproducible in current microarray experiments,we may use functional modules as functional signatures to study core mechanisms of cancers and build robust diagnostic classifiers.展开更多
文摘AIM To investigate the mRNA expression of gammaaminobutyric acid A (GABAA) receptor subunits α1,β1, γ2in different parts of the brain of rats with hepaticencephalopathy.METHODS: Twelve adult male Sprague-Dawley rats were randomly divided into two groups: (1) hepatic encephalopathy model group (n = 6), which was induced by intraperitoneal injection of thioacetamide (TAA, 350 mg/kg) for threeconsecutive days; (2) control group (n = 6), in which the rats were treated with same dose of normal saline solution. After the freeze slice of cerebrum was made,in situ hybridization was used to detect the mRNA of GABAA receptor subunits α1, β1, and γ2 in rat cerebral cortex, basal nuclei, substantia nigra and hippocampi. Image data were collected and analyzed quantitatively by QWin550CWmodel image signal gather and analysis system. RESULTS: In rats with hepatic encephalopathy, mRNA expression levels of GABAA receptor subunits α1, β1 increased significantly in basal nuclei, substantia nigra pars compacta, substantia nigra pars reticularis and hippocampi (144.7±15.67/184.14±4.41, 60.61±33.66/113.07±32.44,87.71± 21.25/128.40±18.85, 122.34±5.56/161.60±4.56,123.29±5.21/140.65±4.15, 123.40±4.42/140.09±4.52,124.76±4.18/140.09±4.12, 141.62±15.09/182.80 ±5.20,69.13±30.74/134.21±43.76, 87.87±25.16/151.01±19.49,122.14±6.30/162.33±3.92, 122.81±5.09/137.19±7.12,123.00±4.63/138.11±5.92, 125.75 ±2.43/138.81±6.10,P<0.01), but did not change in the cerebral cortex compared to the control group. Similar changes were found in the mRNA expression levels of GABAA receptor subunit γ2,which increased significantly in basal nuclei, substantia nigra pars compacta, substantia nigra pars reticularis (136.81±26.41/167.97±16.23, 51.00±36.14/113.18±36.52, 86.35±20.30/126.90±19.74, P<0.01), CA1 of hippocampal (162.15±9.05/178.62±6.45, P<0.05), and no changes were found in the cerebral cortex and CA2, CA3, CA4 of hippocampi.CONCLUSION: In rats with hepatic encephalopathy, mRNA expression levels of GABAA receptor subunits α1,β1, γ2 increase significantly in basal nuclei, substantia nigra and hippocampi, suggesting that the changes of mRNA expression levels in GABAA receptor subunits may contribute to the pathogenesis of hepatic encephalopathy.
基金Supported by the National Natural Science Foundation of China,No. 30370648
文摘AIM: To observe the expressions of early growth response factor-1 (Egr-1) and tissue factor (TF) in rats with cerulein-induced acute pancreatitis and to explore its significance. METHODS: A large dose of cerulein was used to create the experimental acute pancreatitis model in rats. The changes of Egr-1 mRNA and protein in rats were observed during 30 min to 4 h after the treatment and immunohistochemical method was used to observe the localized expression of Egr-1 in tissues. In addition to the mRNA expression of Egr-1 target gene, TF was also observed. A blank control group, and a bombesinadministered group were used for comparison. RESULTS: Alter the stimulation of a large dose of cerulein, the rats showed typical inflammatory changes of acute pancreatitis. Thirty minutes alter the stimulation, the mRNA expression of Egr-1 in the pancreatic tissue reached its peak and then declined, while the expression of Egr-1 protein reached its peak 2 h after the stimulation. Histologically, 2 h after the stimulation, almost all pancreatic acinar cells had the expression of Egr-1 protein, which was focused in the nuclei. The mRNA expression of TF occurred 1 h after the stimulation and gradually increased within 4 h. However, a large dose of bombesin only stimulated the pancreatic tissue to produce a little mRNA expression of Egr-1 and no mRNA expression of Egr-1 protein and TF. CONCLUSION: Egr-1 as a pro-inflammatory transcription factor may play an important role in the pathogenesis of acute pancreatitis by modulating the expression of TF.
基金Key Project Fund of Basic Research, Tianjin Municipal Science and Technology Commission (No. 033801511), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2004–2005).
文摘Objective: To investigate the specific blockage effect of individual antisense RNA on mutant p53 gene in vitro. Methods: The single strand antisense transcription system containing mt-p53 exon 8 sequence (pGEM3zf(+/-)p53exon8) was constructed. The ligation of antisense RNAwith mt-p53 gene was confirmed by in situ hybridization; MDA-MB-231 human breast cancer cells were transfected with ASp53exon8'RNA cotionic liposome-mediated. Expression of mt-p53 protein was examined by immunocytochemical staining and Western blot. Cell proliferation was evaluated by MTT assay; Cell cycle distribution was determined by flow cytometry (FCM); Apoptosis was observed by TUNEL. Results: In transfected MDA-MB-231 cells, hybridization signals were observed in cytoplasm. ASp53exon8'RNA transfection induced inhibition of cell proliferation, G2/M phase arrest and increasing apoptotic rates. In addition, expression of p53 protein was down-regulated. Conclusion: pGEM3zf(+/-)p53exon8 was well constructed and ASp53exon8'RNA can block mt-p53 gene expression specifically and then inhibit MDA-MB-231 cell proliferation in vitro, which may serve as therapeutic means for human malignancy.
基金supported by the National Natural Science Foundation of China (Grant Nos. 30170515,30370388 and 30970668)
文摘Selecting differentially expressed genes(DEGs) is one of the most important tasks in microarray applications for studying multi-factor diseases including cancers.However,the small samples typically used in current microarray studies may only partially reflect the widely altered gene expressions in complex diseases,which would introduce low reproducibility of gene lists selected by statistical methods.Here,by analyzing seven cancer datasets,we showed that,in each cancer,a wide range of functional modules have altered gene expressions and thus have high disease classification abilities.The results also showed that seven modules are shared across diverse cancers,suggesting hints about the common mechanisms of cancers.Therefore,instead of relying on a few individual genes whose selection is hardly reproducible in current microarray experiments,we may use functional modules as functional signatures to study core mechanisms of cancers and build robust diagnostic classifiers.