The discovery of intrinsically disordered proteins (IDP) (i.e., biologically active proteins that do not possess stable secondary and/or tertiary structures) came as an unexpected surprise, as the existence of suc...The discovery of intrinsically disordered proteins (IDP) (i.e., biologically active proteins that do not possess stable secondary and/or tertiary structures) came as an unexpected surprise, as the existence of such proteins is in contradiction to the traditional "sequence →structure →function" paradigm. Accurate prediction of a protein's predisposition to be intrinsically disordered is a necessary prerequisite for the further understanding of principles and mechanisms of protein folding and function, and is a key for the elaboration of a new structural and functional hierarchy of proteins. Therefore, prediction of IDPs has attracted the attention of many researchers, and a number of prediction tools have been developed. Predictions of disorder, in turn, are playing major roles in directing laboratory experiments that are leading to the discovery of ever more disordered proteins, and thereby leading to a positive feedback loop in the investigation of these proteins. In this review of algorithms for intrinsic disorder prediction, the basic concepts of various prediction methods for IDPs are summarized, the strengths and shortcomings of many of the methods are analyzed, and the difficulties and directions of future development of IDP prediction techniques are discussed.展开更多
Vehicle crashworthiness simulation is the main component of the virtual auto-body design. One developing commercial vehicle was simulated on crashworthiness by the non-linear finite element method. The bumper crashwor...Vehicle crashworthiness simulation is the main component of the virtual auto-body design. One developing commercial vehicle was simulated on crashworthiness by the non-linear finite element method. The bumper crashworthiness at the speed of 8 km/h was analyzed and valuated. On the other hand, the deformation of the auto-body, the movement of the steering wheel and the dynamic responses of the occupant at the initial velocity of 50 km/h were studied. The results appear that the design of the vehicle could be improved on structure and material. Finally, the frontal longitudinal beam, the main energy-absorbing part of the auto-body, was optimized on structure. Simulation results also show that applying new material, such as high strength steel, and new manufacture techniques, such as tailor-welded blanks could improve the crashworthiness of the vehicle greatly.展开更多
A sodium–zinc sorbent based flue gas desulfurization technology(Na–Zn-FGD) was proposed based on the experiments and analyses of the thermal decomposition characteristics of Ca SO3 and Zn SO3·2.5H2 O, the waste...A sodium–zinc sorbent based flue gas desulfurization technology(Na–Zn-FGD) was proposed based on the experiments and analyses of the thermal decomposition characteristics of Ca SO3 and Zn SO3·2.5H2 O, the waste products of calcium-based semi-dry and zinc-based flue gas desulfurization(Ca–SD-FGD and Zn–SD-FGD) technologies, respectively. It was found that Zn SO3·2.5H2 O first lost crystal H2 O at 100 °C and then decomposed into SO2 and solid Zn O at 260 °C in the air, while Ca SO3 is oxidized at 450 °C before it decomposed in the air. The experimental results confirm that Zn–SD-FGD technology is good for SO2 removal and recycling, but with problem in clogging and high operational cost. The proposed Na–Zn-FGD is clogging proof, and more cost-effective. In the new process, Na2CO3 is used to generate Na2SO3 for SO2absorption, and the intermediate product Na HSO3 reacts with Zn O powders, producing Zn SO3·2.5H2 O precipitate and Na2SO3 solution. The Na2SO3 solution is clogging proof, which is re-used for SO2 absorption. By thermal decomposition of Zn SO3·2.5H2 O, Zn O is re-generated and SO2 with high purity is co-produced as well. The cycle consumes some amount of raw material Na2CO3 and a small amount of Zn O only. The newly proposed FGD technology could be a substitute of the traditional semi-dry FGD technologies.展开更多
The method proposed in this paper is based on the fact that the damage in different types of structural members has distinctive influence on the structural stiffness. The intrinsic mechanical property of the structure...The method proposed in this paper is based on the fact that the damage in different types of structural members has distinctive influence on the structural stiffness. The intrinsic mechanical property of the structure is tapped and fully utilized for damage detection. The simplified model of the flexibility of frames treats the individual storeys as springs in series and the frame as an equivalent column. It fully considers the main deformation of all beams and columns in the frame. The deformation property of the simplified model accorded well with that of the actual frame model. The obtained increment of lateral displacement change (IOLDC) at the storey level was found to be very sensitive to the local damage in the frame. A damage detection method is pro- posed using the IOLDCs as the damage identification parameters. Numerical examples demonstrate the potential applicability of this method.展开更多
文摘The discovery of intrinsically disordered proteins (IDP) (i.e., biologically active proteins that do not possess stable secondary and/or tertiary structures) came as an unexpected surprise, as the existence of such proteins is in contradiction to the traditional "sequence →structure →function" paradigm. Accurate prediction of a protein's predisposition to be intrinsically disordered is a necessary prerequisite for the further understanding of principles and mechanisms of protein folding and function, and is a key for the elaboration of a new structural and functional hierarchy of proteins. Therefore, prediction of IDPs has attracted the attention of many researchers, and a number of prediction tools have been developed. Predictions of disorder, in turn, are playing major roles in directing laboratory experiments that are leading to the discovery of ever more disordered proteins, and thereby leading to a positive feedback loop in the investigation of these proteins. In this review of algorithms for intrinsic disorder prediction, the basic concepts of various prediction methods for IDPs are summarized, the strengths and shortcomings of many of the methods are analyzed, and the difficulties and directions of future development of IDP prediction techniques are discussed.
文摘Vehicle crashworthiness simulation is the main component of the virtual auto-body design. One developing commercial vehicle was simulated on crashworthiness by the non-linear finite element method. The bumper crashworthiness at the speed of 8 km/h was analyzed and valuated. On the other hand, the deformation of the auto-body, the movement of the steering wheel and the dynamic responses of the occupant at the initial velocity of 50 km/h were studied. The results appear that the design of the vehicle could be improved on structure and material. Finally, the frontal longitudinal beam, the main energy-absorbing part of the auto-body, was optimized on structure. Simulation results also show that applying new material, such as high strength steel, and new manufacture techniques, such as tailor-welded blanks could improve the crashworthiness of the vehicle greatly.
基金Supported by the National High Technology Research and Development Program of China(2009AA05Z302)
文摘A sodium–zinc sorbent based flue gas desulfurization technology(Na–Zn-FGD) was proposed based on the experiments and analyses of the thermal decomposition characteristics of Ca SO3 and Zn SO3·2.5H2 O, the waste products of calcium-based semi-dry and zinc-based flue gas desulfurization(Ca–SD-FGD and Zn–SD-FGD) technologies, respectively. It was found that Zn SO3·2.5H2 O first lost crystal H2 O at 100 °C and then decomposed into SO2 and solid Zn O at 260 °C in the air, while Ca SO3 is oxidized at 450 °C before it decomposed in the air. The experimental results confirm that Zn–SD-FGD technology is good for SO2 removal and recycling, but with problem in clogging and high operational cost. The proposed Na–Zn-FGD is clogging proof, and more cost-effective. In the new process, Na2CO3 is used to generate Na2SO3 for SO2absorption, and the intermediate product Na HSO3 reacts with Zn O powders, producing Zn SO3·2.5H2 O precipitate and Na2SO3 solution. The Na2SO3 solution is clogging proof, which is re-used for SO2 absorption. By thermal decomposition of Zn SO3·2.5H2 O, Zn O is re-generated and SO2 with high purity is co-produced as well. The cycle consumes some amount of raw material Na2CO3 and a small amount of Zn O only. The newly proposed FGD technology could be a substitute of the traditional semi-dry FGD technologies.
文摘The method proposed in this paper is based on the fact that the damage in different types of structural members has distinctive influence on the structural stiffness. The intrinsic mechanical property of the structure is tapped and fully utilized for damage detection. The simplified model of the flexibility of frames treats the individual storeys as springs in series and the frame as an equivalent column. It fully considers the main deformation of all beams and columns in the frame. The deformation property of the simplified model accorded well with that of the actual frame model. The obtained increment of lateral displacement change (IOLDC) at the storey level was found to be very sensitive to the local damage in the frame. A damage detection method is pro- posed using the IOLDCs as the damage identification parameters. Numerical examples demonstrate the potential applicability of this method.