期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
论林奕华话剧创作的新媚俗美学——从《红楼梦》的实验改编说起
1
作者 黄炜星 《戏剧(中央戏剧学院学报)》 CSSCI 北大核心 2023年第2期145-155,共11页
“新媚俗美学”是香港地区“鬼才”剧作家林奕华话剧的特色。《红楼梦:Whatis Sex?》作为其中的实验改编剧,是剧作家在经典文化与流行文化中挖掘到的大众契合点,不在于还原历史的人、事、物,而是置放到话剧当中,与时代发生共鸣。他把当... “新媚俗美学”是香港地区“鬼才”剧作家林奕华话剧的特色。《红楼梦:Whatis Sex?》作为其中的实验改编剧,是剧作家在经典文化与流行文化中挖掘到的大众契合点,不在于还原历史的人、事、物,而是置放到话剧当中,与时代发生共鸣。他把当下社会的热点事件、当代人的精神痼疾、情感伦理等多重主题,搬上舞台予以全新阐释;他通过结构拼贴、性别戏仿、符号赋权,拆解与重塑经典著作;他还突出“反幻觉”的新媚俗美学,以剧场这面具有先锋批判性的镜子,洞见到个体的心理症候与情感困境,进而解读“我是谁”的主体建构问题。 展开更多
关键词 林奕华 《红楼梦》 实验改编 新媚俗美学
原文传递
Two-Phase Rate Adaptation Strategy for Improving Real-Time Video QoE in Mobile Networks 被引量:3
2
作者 Ailing Xiao Jie Liu +2 位作者 Yizhe Li Qiwei Song Ning Ge 《China Communications》 SCIE CSCD 2018年第10期12-24,共13页
With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation method... With the popularity of smart handheld devices, mobile streaming video has multiplied the global network traffic in recent years. A huge concern of users' quality of experience(Qo E) has made rate adaptation methods very attractive. In this paper, we propose a two-phase rate adaptation strategy to improve users' real-time video Qo E. First, to measure and assess video Qo E, we provide a continuous Qo E prediction engine modeled by RNN recurrent neural network. Different from traditional Qo E models which consider the Qo E-aware factors separately or incompletely, our RNN-Qo E model accounts for three descriptive factors(video quality, rebuffering, and rate change) and reflects the impact of cognitive memory and recency. Besides, the video playing is separated into the initial startup phase and the steady playback phase, and we takes different optimization goals for each phase: the former aims at shortening the startup delay while the latter ameliorates the video quality and the rebufferings. Simulation results have shown that RNN-Qo E can follow the subjective Qo E quite well, and the proposed strategy can effectively reduce the occurrence of rebufferings caused by the mismatch between the requested video rates and the fluctuated throughput and attains standout performance on real-time Qo E compared with classical rate adaption methods. 展开更多
关键词 continuous quality of experience (QoE) model recurrent neural network(RNN) real-time video QoE improving dynamic adaptive streaming over HTTP (DASH)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部