Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this pap...Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.展开更多
In this paper, the pseudo-spectral approximations for a class of the Kdv-Burgers type equation is presented. Convergence and stability of the approximation have been proved by Sobolev's inequalities and the bounde...In this paper, the pseudo-spectral approximations for a class of the Kdv-Burgers type equation is presented. Convergence and stability of the approximation have been proved by Sobolev's inequalities and the bounded extensive method of the nonlinear function. Finally, the numerical examples are proposed.展开更多
The experimental values of 2059 β-decay half-lives are systematically analyzed and investigated. We have found that they are in satisfactory agreement with Benford's law, which states that the frequency of occurrenc...The experimental values of 2059 β-decay half-lives are systematically analyzed and investigated. We have found that they are in satisfactory agreement with Benford's law, which states that the frequency of occurrence of each figure, 1-9, as the first significant digit in a surprisingly large number of different data sets follows a logarithmic distribution favoring the smaller ones. Benford's logarithmic distribution of β-deeay half-lives can be explained in terms of Neweomb's justification of Benford's law and empirical exponential law of β-decay half-lives. Moreover, we test the calculated values of 6721 β-decay half-lives with the aid of Benford's law. This indicates that Benford's law is useful for theoretical physicists to test their methods for calculating β-decay half-lives.展开更多
This paper discusses an important issue related to filter divergence in the dimension-reduced projection,four-dimensional variational data assimilation(DRP-4-DVar) approach.Idealized experiments with the Lorenz-96 mod...This paper discusses an important issue related to filter divergence in the dimension-reduced projection,four-dimensional variational data assimilation(DRP-4-DVar) approach.Idealized experiments with the Lorenz-96 model over a period of 200 days showed that the amplitudes of the root mean square errors(RMSEs) reached the same levels as those of the state variables after approximately 100 days because of the accumulation of sampling errors following the cycle of assimilation.Strategies to reduce sampling errors are critical to ensure the quality of ensemble-based assimilation.Numerical experiments showed that localization and reducing observational errors can alleviate,but cannot completely overcome,the filter divergence in the DRP-4-DVar approach,while the method of perturbing observations and the inflation technique can efficiently eliminate the filter divergence problem.展开更多
The Savonius rotor is a vertical axis-wind machine composed of two half cylindrical blades presenting a central gap. It is a slow velocity machine compared with horizontal wind machines. Its efficiency is about twenty...The Savonius rotor is a vertical axis-wind machine composed of two half cylindrical blades presenting a central gap. It is a slow velocity machine compared with horizontal wind machines. Its efficiency is about twenty per cent. In this work experimental tests are presented using two kind of deflectors placed in front of the resistive blade. Such disposition allows to hide the resistant blade and to guide the flow toward the motrice blade. Two deflectors have been used: a short one and a long one. The results obtained in wind tunnel have shown that the long deflector is the more efficient, essentially for high values of the tip speed ratio. One has been interested, using a numerical approach, in the study of the influence of a wall on the aerodynamical field near the rotor.展开更多
The present paper intends to introduce a new method for reducingbends erosion from particles impacts: the ribbed bend erosionprotection method. Ribs are evenly fixed in the range of 20 deg-80deg on the inner-wall of i...The present paper intends to introduce a new method for reducingbends erosion from particles impacts: the ribbed bend erosionprotection method. Ribs are evenly fixed in the range of 20 deg-80deg on the inner-wall of inside 90 deg bend and the bend (includingribs) is made of medium carbon steel. Three-dimensional numericalworks is performed and the result shows satisfactory agreement withthe experimental measurement. Numerical simulation studies thecharacteristics of axial gas flow along the bend and secondary flowat cross section.展开更多
Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the...Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.展开更多
Computational fluid dynamics is an efficient numerical approach for spray atomization study, but it is challenging to accurately capture the gas-liquid interface. In this work, an accurate conservative level set metho...Computational fluid dynamics is an efficient numerical approach for spray atomization study, but it is challenging to accurately capture the gas-liquid interface. In this work, an accurate conservative level set method is intro- duced to accurately track the gas-liquid interfaces in liquid atomization. To validate the capability of this method, binary drop collision and drop impacting on liquid film are investigated. The results are in good agreement with experiment observations. In addition, primary atomization (swirling sheet atomization) is studied using this method. To the swirling sheet atomization, it is found that Rayleigh-Taylor instability in the azimuthal direction causes the primary breakup of liquid sheet and complex vortex structures are clustered around the rim of the liq- uid sheet. The effects of central gas velocity and liquid-gas density ratio on atomization are also investigated. This work lays a solid foundation for further studvin~ the mechanism of s^rav atomization.展开更多
Submersible buoy systems are widely used for oceanographic research,ocean engineering and coastal defense.Severe sea environment has obvious effects on the dynamics of submersible buoy systems.Huge tension can occur a...Submersible buoy systems are widely used for oceanographic research,ocean engineering and coastal defense.Severe sea environment has obvious effects on the dynamics of submersible buoy systems.Huge tension can occur and may cause the snap of cables,especially during the deployment period.This paper studies the deployment dynamics of submersible buoy systems with numerical and experimental methods.By applying the lumped mass approach,a three-dimensional multi-body model of submersible buoy system is developed considering the hydrodynamic force,tension force and impact force between components of submersible buoy system and seabed.Numerical integration method is used to solve the differential equations.The simulation output includes tension force,trajectory,profile and dropping location and impact force of submersible buoys.In addition,the deployment experiment of a simplified submersible buoy model was carried out.The profile and different nodes' velocities of the submersible buoy are obtained.By comparing the results of the two methods,it is found that the numerical model well simulates the actual process and conditions of the experiment.The simulation results agree well with the results of the experiment such as gravity anchor's location and velocities of different nodes of the submersible buoy.The study results will help to understand the conditions of submersible buoy's deployment,operation and recovery,and can be used to guide the design and optimization of the system.展开更多
Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics. Acoustic characteristics of a sonar platform model with a ...Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics. Acoustic characteristics of a sonar platform model with a sound absorption wedge were measured, and the effects of different wedge laid areas on platform acoustic characteristic were tested. Vibration acceleration and self-noise caused by model vibration were measured in four conditions: 0%, 36%, 60%, and 100% of wedge laid area when the sonar platform was under a single frequency excitation force. An experiment was performed to validate a corresponding numerical calculation. The numerical vibration characteristics of platform area were calculated by the finite element method, and self-noise caused by the vibration in it was predicted by an experiential formula. The conclusions prove that the numerical calculation method can partially replace the experimental process for obtaining vibration and sound characteristics.展开更多
In this paper, the vibration characteristics of the structure in the finite fluid domain are analyzed using a coupled finite element method. The added mass matrix is calculated with finite element method (FEM) by 8-...In this paper, the vibration characteristics of the structure in the finite fluid domain are analyzed using a coupled finite element method. The added mass matrix is calculated with finite element method (FEM) by 8-node acoustic fluid elements. The vibration characteristics of the structure in the finite fluid domain are calculated combining structure FEM mass matrix. By writing relevant programs, the numerical analysis on vibration characteristics of a submerged cantilever rectangular plate in finite fluid domain and loaded ship model is performed. A modal identification experiment for the loaded ship model in air and in water is conducted and the experiment results verify the reliability of the numerical analysis. The numerical method can be used for further research on vibration characteristics and acoustic radiation problems of the structure in the finite fluid domain.展开更多
Homogenization is concerned with obtaining the average properties of a material. The problem on its own has no easy solution, except in cases like the periodic case, when it can be obtained in closed form. In this pap...Homogenization is concerned with obtaining the average properties of a material. The problem on its own has no easy solution, except in cases like the periodic case, when it can be obtained in closed form. In this paper we consider a numerical solution of the elliptic homogenization problem for the case of rapidly varying tensor or boundary conditions. The method makes use of an adaptive finite element method to correctly capture the rapid change in the tensor or boundary condition. In the numerical experiments we vary the mesh size and do a posteriori error analysis on test problems.展开更多
A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program o...A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program of a single oil film of the hydrostatic bearing. The effects of key lubrication parameters of the hydrostatic bearing are evaluated and analyzed under various working conditions,i.e. under no-load,a load of 40 t,a full load of 160 t,and the rotation speed of 1r/min,2r/min,4r/min,8r/min,16r/min,32r/min. The transient data of oil film bearing capacity under different load and rotation speed are acquired for a total of 18 working conditions during the oil film thickness changing. It allows the effective prediction of dynamic performance of large size hydrostatic bearing. Experiments on hydrostatic bearing oil film have been performed and the results were used to define the boundary conditions for the numerical simulations and validate the developed numerical model. The results showed that the oil film thickness became thinner with the increase of the operating time of the hydrostatic bearing,both the oil film rigidity and the oil cavity pressure increased significantly,and the increase of the bearing capacity was inversely proportional to the cube of the change of the film thickness. Meanwhile,the effect of the load condition on carrying capacity of large size static bearing was more important than the speed condition. The error between the simulation value and the experimental value was 4.25%.展开更多
This work is concerned with time stepping finite element methods for abstract second order evolution problems. We derive optimal order a posteriori error estimates and a posteriori nodal superconvergence error estimat...This work is concerned with time stepping finite element methods for abstract second order evolution problems. We derive optimal order a posteriori error estimates and a posteriori nodal superconvergence error estimates using the energy approach and the duality argument. With the help of the a posteriori error estimator developed in this work, we will further propose an adaptive time stepping strategy. A number of numerical experiments are performed to illustrate the reliability and efficiency of the a posteriori error estimates and to assess the effectiveness of the proposed adaptive time stepping method.展开更多
基金Supported by the Natural Science Foundation of China under Grant No.0971226the 973 Project of China under Grant No.2009CB723802+1 种基金the Research Innovation Fund of Hunan Province under Grant No.CX2011B011the Innovation Fund of NUDT under Grant No.B110205
文摘Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.
基金Supported by the Natural Science Foundation of Henan Educational Committee(2003110005)Supported by the Natural Science Foundation of Henan University(XK02069)
文摘In this paper, the pseudo-spectral approximations for a class of the Kdv-Burgers type equation is presented. Convergence and stability of the approximation have been proved by Sobolev's inequalities and the bounded extensive method of the nonlinear function. Finally, the numerical examples are proposed.
基金supported by the National Natural Science Foundation of China under Grant Nos. 10675090, 10535010, and 10775068the National Fund for Forstering Talents of Basic Science under Grant No. J0630316+2 种基金the 973 State Key Basic Research and Development Program of China under Grant No. 2007CB815004the CAS Knowledge Innovation Project under Grant No. KJCX2-SW-N02the Research Fund of Doctoral Points under Grant No. 20070284016
文摘The experimental values of 2059 β-decay half-lives are systematically analyzed and investigated. We have found that they are in satisfactory agreement with Benford's law, which states that the frequency of occurrence of each figure, 1-9, as the first significant digit in a surprisingly large number of different data sets follows a logarithmic distribution favoring the smaller ones. Benford's logarithmic distribution of β-deeay half-lives can be explained in terms of Neweomb's justification of Benford's law and empirical exponential law of β-decay half-lives. Moreover, we test the calculated values of 6721 β-decay half-lives with the aid of Benford's law. This indicates that Benford's law is useful for theoretical physicists to test their methods for calculating β-decay half-lives.
基金the National Basic Research Program of China (973 Program) (Grant No. 2010CB951604)the National High Technology Research and Development Program of China (863 Program) (Grant No. 2010AA012304)+1 种基金the China Meteorological Administration for the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY(QX)200906009)the LASG free exploration fund
文摘This paper discusses an important issue related to filter divergence in the dimension-reduced projection,four-dimensional variational data assimilation(DRP-4-DVar) approach.Idealized experiments with the Lorenz-96 model over a period of 200 days showed that the amplitudes of the root mean square errors(RMSEs) reached the same levels as those of the state variables after approximately 100 days because of the accumulation of sampling errors following the cycle of assimilation.Strategies to reduce sampling errors are critical to ensure the quality of ensemble-based assimilation.Numerical experiments showed that localization and reducing observational errors can alleviate,but cannot completely overcome,the filter divergence in the DRP-4-DVar approach,while the method of perturbing observations and the inflation technique can efficiently eliminate the filter divergence problem.
文摘The Savonius rotor is a vertical axis-wind machine composed of two half cylindrical blades presenting a central gap. It is a slow velocity machine compared with horizontal wind machines. Its efficiency is about twenty per cent. In this work experimental tests are presented using two kind of deflectors placed in front of the resistive blade. Such disposition allows to hide the resistant blade and to guide the flow toward the motrice blade. Two deflectors have been used: a short one and a long one. The results obtained in wind tunnel have shown that the long deflector is the more efficient, essentially for high values of the tip speed ratio. One has been interested, using a numerical approach, in the study of the influence of a wall on the aerodynamical field near the rotor.
基金Supported by the National Natural Science Foundation of China (No. 29876034).
文摘The present paper intends to introduce a new method for reducingbends erosion from particles impacts: the ribbed bend erosionprotection method. Ribs are evenly fixed in the range of 20 deg-80deg on the inner-wall of inside 90 deg bend and the bend (includingribs) is made of medium carbon steel. Three-dimensional numericalworks is performed and the result shows satisfactory agreement withthe experimental measurement. Numerical simulation studies thecharacteristics of axial gas flow along the bend and secondary flowat cross section.
基金Project(xjj20100078) supported by the Fundamental Research Funds for the Central Universities in China
文摘Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.
基金the National Natural Science Foundation of China(51176170,51276163)the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars(LR12E06001)supported by the Fundamental Research Funds for the Central Universities
文摘Computational fluid dynamics is an efficient numerical approach for spray atomization study, but it is challenging to accurately capture the gas-liquid interface. In this work, an accurate conservative level set method is intro- duced to accurately track the gas-liquid interfaces in liquid atomization. To validate the capability of this method, binary drop collision and drop impacting on liquid film are investigated. The results are in good agreement with experiment observations. In addition, primary atomization (swirling sheet atomization) is studied using this method. To the swirling sheet atomization, it is found that Rayleigh-Taylor instability in the azimuthal direction causes the primary breakup of liquid sheet and complex vortex structures are clustered around the rim of the liq- uid sheet. The effects of central gas velocity and liquid-gas density ratio on atomization are also investigated. This work lays a solid foundation for further studvin~ the mechanism of s^rav atomization.
基金supported by the Program for Excellent University Talents in New Century (NCET-12-0500)the National Natural Science Foundation of China (No.51175484)+2 种基金the Science Foundation of Shandong Province (No.ZR2010EM052)the support of the Project 111 (No.B14028)the Key Ocean Engineering Laboratory of Shandong Province
文摘Submersible buoy systems are widely used for oceanographic research,ocean engineering and coastal defense.Severe sea environment has obvious effects on the dynamics of submersible buoy systems.Huge tension can occur and may cause the snap of cables,especially during the deployment period.This paper studies the deployment dynamics of submersible buoy systems with numerical and experimental methods.By applying the lumped mass approach,a three-dimensional multi-body model of submersible buoy system is developed considering the hydrodynamic force,tension force and impact force between components of submersible buoy system and seabed.Numerical integration method is used to solve the differential equations.The simulation output includes tension force,trajectory,profile and dropping location and impact force of submersible buoys.In addition,the deployment experiment of a simplified submersible buoy model was carried out.The profile and different nodes' velocities of the submersible buoy are obtained.By comparing the results of the two methods,it is found that the numerical model well simulates the actual process and conditions of the experiment.The simulation results agree well with the results of the experiment such as gravity anchor's location and velocities of different nodes of the submersible buoy.The study results will help to understand the conditions of submersible buoy's deployment,operation and recovery,and can be used to guide the design and optimization of the system.
基金Supported by Harbin Talents of Science and Technology Innovation Special Fund(2011RFQXG021)
文摘Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics. Acoustic characteristics of a sonar platform model with a sound absorption wedge were measured, and the effects of different wedge laid areas on platform acoustic characteristic were tested. Vibration acceleration and self-noise caused by model vibration were measured in four conditions: 0%, 36%, 60%, and 100% of wedge laid area when the sonar platform was under a single frequency excitation force. An experiment was performed to validate a corresponding numerical calculation. The numerical vibration characteristics of platform area were calculated by the finite element method, and self-noise caused by the vibration in it was predicted by an experiential formula. The conclusions prove that the numerical calculation method can partially replace the experimental process for obtaining vibration and sound characteristics.
基金Supported by the National Natural Science Foundation of China (No. 51079027).
文摘In this paper, the vibration characteristics of the structure in the finite fluid domain are analyzed using a coupled finite element method. The added mass matrix is calculated with finite element method (FEM) by 8-node acoustic fluid elements. The vibration characteristics of the structure in the finite fluid domain are calculated combining structure FEM mass matrix. By writing relevant programs, the numerical analysis on vibration characteristics of a submerged cantilever rectangular plate in finite fluid domain and loaded ship model is performed. A modal identification experiment for the loaded ship model in air and in water is conducted and the experiment results verify the reliability of the numerical analysis. The numerical method can be used for further research on vibration characteristics and acoustic radiation problems of the structure in the finite fluid domain.
文摘Homogenization is concerned with obtaining the average properties of a material. The problem on its own has no easy solution, except in cases like the periodic case, when it can be obtained in closed form. In this paper we consider a numerical solution of the elliptic homogenization problem for the case of rapidly varying tensor or boundary conditions. The method makes use of an adaptive finite element method to correctly capture the rapid change in the tensor or boundary condition. In the numerical experiments we vary the mesh size and do a posteriori error analysis on test problems.
基金Supported by the National Natural Science Foundation of China(No.51005063,51375123)National Science and Technology Cooperation Projects of China(No.2012DFR70840)
文摘A new method is developed to assess and analyze the dynamic performance of hydrostatic bearing oil film by using an amulets-layer dynamic mesh technique. It is implemented using C Language to compile the UDF program of a single oil film of the hydrostatic bearing. The effects of key lubrication parameters of the hydrostatic bearing are evaluated and analyzed under various working conditions,i.e. under no-load,a load of 40 t,a full load of 160 t,and the rotation speed of 1r/min,2r/min,4r/min,8r/min,16r/min,32r/min. The transient data of oil film bearing capacity under different load and rotation speed are acquired for a total of 18 working conditions during the oil film thickness changing. It allows the effective prediction of dynamic performance of large size hydrostatic bearing. Experiments on hydrostatic bearing oil film have been performed and the results were used to define the boundary conditions for the numerical simulations and validate the developed numerical model. The results showed that the oil film thickness became thinner with the increase of the operating time of the hydrostatic bearing,both the oil film rigidity and the oil cavity pressure increased significantly,and the increase of the bearing capacity was inversely proportional to the cube of the change of the film thickness. Meanwhile,the effect of the load condition on carrying capacity of large size static bearing was more important than the speed condition. The error between the simulation value and the experimental value was 4.25%.
基金supported by National Natural Science Foundation of China(Grant Nos.1117121911161130004 and 11101199)+1 种基金E-Institutes of Shanghai Municipal Education Commission(Grant No.E03004)Program for New Century Excellent Talents in Fujian Province University(Grant No.JA12260)
文摘This work is concerned with time stepping finite element methods for abstract second order evolution problems. We derive optimal order a posteriori error estimates and a posteriori nodal superconvergence error estimates using the energy approach and the duality argument. With the help of the a posteriori error estimator developed in this work, we will further propose an adaptive time stepping strategy. A number of numerical experiments are performed to illustrate the reliability and efficiency of the a posteriori error estimates and to assess the effectiveness of the proposed adaptive time stepping method.