期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
深度学习模型应用:面向审计业务全流程的整合性框架 被引量:4
1
作者 吴勇 陆艺 +1 位作者 朱卫东 张超 《财会月刊》 北大核心 2023年第1期108-116,共9页
深度学习不仅拥有对半结构化和非结构化数据强大的信息识别能力,还能基于海量数据进行高效精准的预测分析和判断支持,这将极大地拓展审计证据范围,改善审计决策机制,有助于提升审计效率和审计质量。本文基于深度学习模型的信息识别功能... 深度学习不仅拥有对半结构化和非结构化数据强大的信息识别能力,还能基于海量数据进行高效精准的预测分析和判断支持,这将极大地拓展审计证据范围,改善审计决策机制,有助于提升审计效率和审计质量。本文基于深度学习模型的信息识别功能和判断支持功能,将深度学习的智能分析与审计师的经验修正有效融合,不断扩充、更新、迭代审计数据仓库,面向审计业务全流程,构建深度学习模型应用于审计业务不同阶段的集成性、整合性框架,以便更好地指导和推动深度学习模型和方法的审计应用。 展开更多
关键词 深度学习 机器学习 审计业务全流程 数据仓库
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部