传统的RFM模型被广泛地应用于各类零售企业、银行和通信等行业,通过对基于RFM模型的客户细分的应用研究,本文首次提出对于零售企业的基于RFM模型的客户终身价值的评价应该对企业的所有产品分类,创建基于RFM的多层级客户价值模型,并利用S...传统的RFM模型被广泛地应用于各类零售企业、银行和通信等行业,通过对基于RFM模型的客户细分的应用研究,本文首次提出对于零售企业的基于RFM模型的客户终身价值的评价应该对企业的所有产品分类,创建基于RFM的多层级客户价值模型,并利用SQL server 2000中的Northwind数据库对这个模型进行实证研究。首先比较传统模型和多层级模型的客户终身价值的分布,然后对个人客户的分产品的客户价值、传统模型客户终身价值和多层级模型的客户终身价值作为细分变量聚类,结合客户终身价值分析不同类别产品的客户价值,挖掘出运用传统RFM模型进行客户细分隐藏的部分重要的客户信息,对管理人员制定营销策略有很好的实践价值,并验证了该模型的有效性。展开更多
文摘传统的RFM模型被广泛地应用于各类零售企业、银行和通信等行业,通过对基于RFM模型的客户细分的应用研究,本文首次提出对于零售企业的基于RFM模型的客户终身价值的评价应该对企业的所有产品分类,创建基于RFM的多层级客户价值模型,并利用SQL server 2000中的Northwind数据库对这个模型进行实证研究。首先比较传统模型和多层级模型的客户终身价值的分布,然后对个人客户的分产品的客户价值、传统模型客户终身价值和多层级模型的客户终身价值作为细分变量聚类,结合客户终身价值分析不同类别产品的客户价值,挖掘出运用传统RFM模型进行客户细分隐藏的部分重要的客户信息,对管理人员制定营销策略有很好的实践价值,并验证了该模型的有效性。