大型活动散场期间的地铁车站客流属于可预知的非常规客流,采用常规客流的统计预测方法难以准确预测其客流需求。基于深度学习,将历史客流规律、大型活动数据与实时自动售检票系统数据相结合,提出了一种适用于大型活动散场期间地铁车站...大型活动散场期间的地铁车站客流属于可预知的非常规客流,采用常规客流的统计预测方法难以准确预测其客流需求。基于深度学习,将历史客流规律、大型活动数据与实时自动售检票系统数据相结合,提出了一种适用于大型活动散场期间地铁车站的短时客流预测模型。首先对历史客流数据进行了拆分及降噪处理,并分析了活动客流特征。之后,基于深度学习框架构建多层结构的卷积神经网络,拟合活动客流特征与客流时空分布的映射关系,并选取Adam(adaptive moment estimation)算法优化训练过程,以适用于活动散场时客流集中进站的情况。最后,以北京地铁奥林匹克公园站为例,利用实测数据验证了模型的准确性。预测结果表明:建立的Adam-CNN(convolution neural network)模型相对于常用时间序列方法自回归滑动平均和传统神经网络SGD-CNN模型具有更高的精度,能够为大型活动的组织提供更为有力的支持。展开更多
文摘大型活动散场期间的地铁车站客流属于可预知的非常规客流,采用常规客流的统计预测方法难以准确预测其客流需求。基于深度学习,将历史客流规律、大型活动数据与实时自动售检票系统数据相结合,提出了一种适用于大型活动散场期间地铁车站的短时客流预测模型。首先对历史客流数据进行了拆分及降噪处理,并分析了活动客流特征。之后,基于深度学习框架构建多层结构的卷积神经网络,拟合活动客流特征与客流时空分布的映射关系,并选取Adam(adaptive moment estimation)算法优化训练过程,以适用于活动散场时客流集中进站的情况。最后,以北京地铁奥林匹克公园站为例,利用实测数据验证了模型的准确性。预测结果表明:建立的Adam-CNN(convolution neural network)模型相对于常用时间序列方法自回归滑动平均和传统神经网络SGD-CNN模型具有更高的精度,能够为大型活动的组织提供更为有力的支持。