Indoor localization is very critical for medical care applications, e.g., the patient localization or tracking inside the building of the hospital. Traditional Radio Frequency Identification(RFID) technologies are ver...Indoor localization is very critical for medical care applications, e.g., the patient localization or tracking inside the building of the hospital. Traditional Radio Frequency Identification(RFID) technologies are very popular in this area since their cost is very low. In such technologies, each tag acts as the transmitter and the Radio Signal Strength Indicator(RSSI) information is measured from the readers. However, RSSI information suffers severely from the multi- path phenomenon. As a result, if in a very large area, the localization accuracy will be affected seriously. In order to solve this problem, we introduce Wireless Sensor Networks(WSNs) with only a few nodes, each of which acts as both transmitter and receiver. In such networks, the change of signal strength(referred as dynamic of RSSI) is leveraged to select a cluster of reference tags as candidates. Then the fi nal target location is estimated by using the RSSI relationships between the target tag and candidate reference tags. Thus, the localization accuracy and scalability are able to be improved. We proposed two algorithms, SA-LANDMARC, and COCKTAIL. Experiments show that the localization accuracy of the two algorithms can reach 0.7m and 0.45 m, respectively. Compared to most traditional Radio Frequency(RF)-based approaches, the localization accuracy is improved at least 50%.展开更多
The sparse nature of location finding in the spatial domain makes it possible to exploit the Compressive Sensing (CS) theory for wireless location.CS-based location algorithm can largely reduce the number of online me...The sparse nature of location finding in the spatial domain makes it possible to exploit the Compressive Sensing (CS) theory for wireless location.CS-based location algorithm can largely reduce the number of online measurements while achieving a high level of localization accuracy,which makes the CS-based solution very attractive for indoor positioning.However,CS theory offers exact deterministic recovery of the sparse or compressible signals under two basic restriction conditions of sparsity and incoherence.In order to achieve a good recovery performance of sparse signals,CS-based solution needs to construct an efficient CS model.The model must satisfy the practical application requirements as well as following theoretical restrictions.In this paper,we propose two novel CS-based location solutions based on two different points of view:the CS-based algorithm with raising-dimension pre-processing and the CS-based algorithm with Minor Component Analysis (MCA).Analytical studies and simulations indicate that the proposed novel schemes achieve much higher localization accuracy.展开更多
This paper reviews recent advances in radar sensor design for low-power healthcare,indoor real-time positioning and other applications of IoT.Various radar front-end architectures and digital processing methods are pr...This paper reviews recent advances in radar sensor design for low-power healthcare,indoor real-time positioning and other applications of IoT.Various radar front-end architectures and digital processing methods are proposed to improve the detection performance including detection accuracy,detection range and power consumption.While many of the reported designs were prototypes for concept verification,several integrated radar systems have been demonstrated with reliable measured results with demo systems.A performance comparison of latest radar chip designs has been provided to show their features of different architectures.With great development of IoT,short-range low-power radar sensors for healthcare and indoor positioning applications will attract more and more research interests in the near future.展开更多
Transceiver-free object localization can localize target through using Radio Frequency(RF) technologies without carrying any device, which attracts many researchers' attentions. Most traditional technologies usual...Transceiver-free object localization can localize target through using Radio Frequency(RF) technologies without carrying any device, which attracts many researchers' attentions. Most traditional technologies usually first deploy a number of reference nodes which are able to communicate with each other, then select only some wireless links, whose signals are affected the most by the transceiver-free target, to estimate the target position. However, such traditional technologies adopt an ideal model for the target, the other link information and environment interference behavior are not considered comprehensively. In order to overcome this drawback, we propose a method which is able to precisely estimate the transceiver-free target position. It not only can leverage more link information, but also take environmental interference into account. Two algorithms are proposed in our system, one is Best K-Nearest Neighbor(KNN) algorithm, the other is Support Vector Regression(SVR) algorithm. Our experiments are based on Telos B sensor nodes and performed in different complex lab areas which have many different furniture and equipment. The experiment results show that the average localization error is round 1.1m. Compared with traditional methods, the localization accuracy is increased nearly two times.展开更多
基金supported in part by China NSFC Grant 61202377 and 61170076the Guangdong Natural Science Foundation under Grant 2014A030313553+2 种基金the China National High Technology Research and Development Program 863, under Grant 2015AA015305Joint Funds of the National Natural Science Foundation of China under Grant U1301252Guangdong Province Key Laboratory Project under grant 2012A061400024
文摘Indoor localization is very critical for medical care applications, e.g., the patient localization or tracking inside the building of the hospital. Traditional Radio Frequency Identification(RFID) technologies are very popular in this area since their cost is very low. In such technologies, each tag acts as the transmitter and the Radio Signal Strength Indicator(RSSI) information is measured from the readers. However, RSSI information suffers severely from the multi- path phenomenon. As a result, if in a very large area, the localization accuracy will be affected seriously. In order to solve this problem, we introduce Wireless Sensor Networks(WSNs) with only a few nodes, each of which acts as both transmitter and receiver. In such networks, the change of signal strength(referred as dynamic of RSSI) is leveraged to select a cluster of reference tags as candidates. Then the fi nal target location is estimated by using the RSSI relationships between the target tag and candidate reference tags. Thus, the localization accuracy and scalability are able to be improved. We proposed two algorithms, SA-LANDMARC, and COCKTAIL. Experiments show that the localization accuracy of the two algorithms can reach 0.7m and 0.45 m, respectively. Compared to most traditional Radio Frequency(RF)-based approaches, the localization accuracy is improved at least 50%.
基金supported by the National Natural Science Foundation of China under Grant No.61001119the Fund for Creative Research Groups of China under Grant No.61121001
文摘The sparse nature of location finding in the spatial domain makes it possible to exploit the Compressive Sensing (CS) theory for wireless location.CS-based location algorithm can largely reduce the number of online measurements while achieving a high level of localization accuracy,which makes the CS-based solution very attractive for indoor positioning.However,CS theory offers exact deterministic recovery of the sparse or compressible signals under two basic restriction conditions of sparsity and incoherence.In order to achieve a good recovery performance of sparse signals,CS-based solution needs to construct an efficient CS model.The model must satisfy the practical application requirements as well as following theoretical restrictions.In this paper,we propose two novel CS-based location solutions based on two different points of view:the CS-based algorithm with raising-dimension pre-processing and the CS-based algorithm with Minor Component Analysis (MCA).Analytical studies and simulations indicate that the proposed novel schemes achieve much higher localization accuracy.
文摘This paper reviews recent advances in radar sensor design for low-power healthcare,indoor real-time positioning and other applications of IoT.Various radar front-end architectures and digital processing methods are proposed to improve the detection performance including detection accuracy,detection range and power consumption.While many of the reported designs were prototypes for concept verification,several integrated radar systems have been demonstrated with reliable measured results with demo systems.A performance comparison of latest radar chip designs has been provided to show their features of different architectures.With great development of IoT,short-range low-power radar sensors for healthcare and indoor positioning applications will attract more and more research interests in the near future.
基金supported by the National Natural Science Foundation of China (Grant No.61202377, U1301251)National High Technology Joint Research Program of China (Grant No.2015AA015305)+1 种基金Science and Technology Planning Project of Guangdong Province (Grant No.2013B090500055)Guangdong Natural Science Foundation (Grant No.2014A030313553)
文摘Transceiver-free object localization can localize target through using Radio Frequency(RF) technologies without carrying any device, which attracts many researchers' attentions. Most traditional technologies usually first deploy a number of reference nodes which are able to communicate with each other, then select only some wireless links, whose signals are affected the most by the transceiver-free target, to estimate the target position. However, such traditional technologies adopt an ideal model for the target, the other link information and environment interference behavior are not considered comprehensively. In order to overcome this drawback, we propose a method which is able to precisely estimate the transceiver-free target position. It not only can leverage more link information, but also take environmental interference into account. Two algorithms are proposed in our system, one is Best K-Nearest Neighbor(KNN) algorithm, the other is Support Vector Regression(SVR) algorithm. Our experiments are based on Telos B sensor nodes and performed in different complex lab areas which have many different furniture and equipment. The experiment results show that the average localization error is round 1.1m. Compared with traditional methods, the localization accuracy is increased nearly two times.