The performance of a joint data assimilation system(Tan-Tracker),which is based on the PODEn4 Dvar assimilation method,in assimilating Greenhouse gases Observing SATellite(GOSAT) carbon dioxide(CO2) data,was eva...The performance of a joint data assimilation system(Tan-Tracker),which is based on the PODEn4 Dvar assimilation method,in assimilating Greenhouse gases Observing SATellite(GOSAT) carbon dioxide(CO2) data,was evaluated.Atmospheric 3D CO2 concentrations and CO2 surface fluxes(CFs) from2010 were simulated using a global chemistry transport model(GEOS-Chem).TheTan-Tracker system used the simulated CO2 concentrations and fluxes as a background field and assimilated the GOSAT column average dry-air mole fraction of CO2(X(CO2)) data to optimize CO2 concentrations and CFs in the same assimilation window.Monthly simulated X(CO2)(X(CO2)Sim)) and assimilated X(CO2)(X(CO2),TT) data retrieved at different satellite scan positions were compared with GOSAT-observed X(CO2)(X(CO2),obs)data.The average RMSE between the monthly X(CO2),TT and X(CO2),Obs data was significantly(30%) lower than the average RMSE between X(CO2),Sim and X(CO2),Obs).Specifically,reductions in error were found for the positions of northern Africa(the Sahara),the Indian peninsula,southern Africa,southern North America,and western Australia.The difference between the correlation coefficients of the X(CO2),Sim)and X(CO2),Obs and those of the X(CO2)Π),TT and X(CO2),Obs was only small.In general,the Tan-Tracker system performed very well after assimilating the GOSAT data.展开更多
基金partially supported by the National High Technology Research and Development Program of China[grant number 2013AA122002]the National Natural Science Foundation of China[grant numbers 41575100 and 91437220]+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences[grant number KZCX2-EW-QN207]the Special Fund for Meteorological Scientific Research in Public Interest[grant number GYHY201506002]
文摘The performance of a joint data assimilation system(Tan-Tracker),which is based on the PODEn4 Dvar assimilation method,in assimilating Greenhouse gases Observing SATellite(GOSAT) carbon dioxide(CO2) data,was evaluated.Atmospheric 3D CO2 concentrations and CO2 surface fluxes(CFs) from2010 were simulated using a global chemistry transport model(GEOS-Chem).TheTan-Tracker system used the simulated CO2 concentrations and fluxes as a background field and assimilated the GOSAT column average dry-air mole fraction of CO2(X(CO2)) data to optimize CO2 concentrations and CFs in the same assimilation window.Monthly simulated X(CO2)(X(CO2)Sim)) and assimilated X(CO2)(X(CO2),TT) data retrieved at different satellite scan positions were compared with GOSAT-observed X(CO2)(X(CO2),obs)data.The average RMSE between the monthly X(CO2),TT and X(CO2),Obs data was significantly(30%) lower than the average RMSE between X(CO2),Sim and X(CO2),Obs).Specifically,reductions in error were found for the positions of northern Africa(the Sahara),the Indian peninsula,southern Africa,southern North America,and western Australia.The difference between the correlation coefficients of the X(CO2),Sim)and X(CO2),Obs and those of the X(CO2)Π),TT and X(CO2),Obs was only small.In general,the Tan-Tracker system performed very well after assimilating the GOSAT data.