黄芩素可通过电子转移效应猝灭聚乙烯亚胺(PEI)包覆的锰(Mn)掺杂硫化锌(Zn S)量子点(PEIMn/Zn S QDs)的室温磷光。基于上述原理,建立了一种简单、快速测定黄芩素含量的室温磷光检测方法,PEI-Mn/Zn S QDs以水相共沉淀法获得。结果表明:当...黄芩素可通过电子转移效应猝灭聚乙烯亚胺(PEI)包覆的锰(Mn)掺杂硫化锌(Zn S)量子点(PEIMn/Zn S QDs)的室温磷光。基于上述原理,建立了一种简单、快速测定黄芩素含量的室温磷光检测方法,PEI-Mn/Zn S QDs以水相共沉淀法获得。结果表明:当pH=8.0,反应时间为10 min时,量子点的磷光猝灭程度与黄芩素浓度呈良好的线性关系,线性范围为0.07~0.60 mg·L^(-1),方法检出限为0.039 mg·L^(-1),相关系数(r)为0.997,相对标准偏差为4.1%,实际样品的检测回收率为96.0%~100.7%。所建立的方法可有效避免常见离子和氨基酸等的干扰,适用于黄芩饮片及血清中黄芩素含量的快速测定,有望应用于医药行业中黄芩素含量的测定分析,也为其他药物基于量子点电子转移机制的检测提供了技术依据。展开更多
With the rapid development of wireless technologies, it is possible for Chinese greenhouses to be equipped with wireless sensor networks due to their low-cost, simplicity and mobility. In the current study, we compare...With the rapid development of wireless technologies, it is possible for Chinese greenhouses to be equipped with wireless sensor networks due to their low-cost, simplicity and mobility. In the current study, we compared the advantages of ZigBee with other two similar wireless networking protocols, Wi-Fi and Bluetooth, and proposed a wireless solution for green- house monitoring and control system based on ZigBee technology. As an explorative application of ZigBee technology in Chinese greenhouse, it may promote Chinese protected agriculture.展开更多
Mn-doped ZnS quantum dots/methyl violet nanohybrids were explored to develop a novel room temperature phosphorescence (RTP) sensor for the detection of DNA. Methyl violet (MV) as the electron acceptors was adsorbed on...Mn-doped ZnS quantum dots/methyl violet nanohybrids were explored to develop a novel room temperature phosphorescence (RTP) sensor for the detection of DNA. Methyl violet (MV) as the electron acceptors was adsorbed on the surface of the quantum dots (QDs) to quench the RTP of the Mn-doped ZnS QDs through an electron-transfer process under excitation. The addition of DNA recovered the RTP signal of the Mn-doped ZnS QDs due to the binding of MV with DNA and the removal of MV from the surface of the Mn-doped ZnS QDs. Under the optimal conditions, the enhanced RTP intensity of the Mn-doped ZnS QDs/MV nanohybrids linearly increased with the concentration of DNA from 0.08 to 12 mg L-1 with the detection limit of 33.6 μg L-1. The relative standard deviation for eleven replicate detections of the reagent blank was 3.7%. The developed method was applied to the detection of DNA in spiked urine samples with recoveries of 96%-103% without interference from nonspecific fluorescence.展开更多
文摘黄芩素可通过电子转移效应猝灭聚乙烯亚胺(PEI)包覆的锰(Mn)掺杂硫化锌(Zn S)量子点(PEIMn/Zn S QDs)的室温磷光。基于上述原理,建立了一种简单、快速测定黄芩素含量的室温磷光检测方法,PEI-Mn/Zn S QDs以水相共沉淀法获得。结果表明:当pH=8.0,反应时间为10 min时,量子点的磷光猝灭程度与黄芩素浓度呈良好的线性关系,线性范围为0.07~0.60 mg·L^(-1),方法检出限为0.039 mg·L^(-1),相关系数(r)为0.997,相对标准偏差为4.1%,实际样品的检测回收率为96.0%~100.7%。所建立的方法可有效避免常见离子和氨基酸等的干扰,适用于黄芩饮片及血清中黄芩素含量的快速测定,有望应用于医药行业中黄芩素含量的测定分析,也为其他药物基于量子点电子转移机制的检测提供了技术依据。
基金Project (No. 2005C22060) supported by the Science and Technology Department of Zhejiang Province, China
文摘With the rapid development of wireless technologies, it is possible for Chinese greenhouses to be equipped with wireless sensor networks due to their low-cost, simplicity and mobility. In the current study, we compared the advantages of ZigBee with other two similar wireless networking protocols, Wi-Fi and Bluetooth, and proposed a wireless solution for green- house monitoring and control system based on ZigBee technology. As an explorative application of ZigBee technology in Chinese greenhouse, it may promote Chinese protected agriculture.
基金supported by the National Natural Science Foundation of China (20935001)the National Basic Research Program of China (2011CB707703)+1 种基金the Tianjin Natural Science Foundation (10JCZDJC16300) for YAN XiuPingScientific Research Founda-tion of Education Commission of Hubei Province (Q20111010) for HE Yu
文摘Mn-doped ZnS quantum dots/methyl violet nanohybrids were explored to develop a novel room temperature phosphorescence (RTP) sensor for the detection of DNA. Methyl violet (MV) as the electron acceptors was adsorbed on the surface of the quantum dots (QDs) to quench the RTP of the Mn-doped ZnS QDs through an electron-transfer process under excitation. The addition of DNA recovered the RTP signal of the Mn-doped ZnS QDs due to the binding of MV with DNA and the removal of MV from the surface of the Mn-doped ZnS QDs. Under the optimal conditions, the enhanced RTP intensity of the Mn-doped ZnS QDs/MV nanohybrids linearly increased with the concentration of DNA from 0.08 to 12 mg L-1 with the detection limit of 33.6 μg L-1. The relative standard deviation for eleven replicate detections of the reagent blank was 3.7%. The developed method was applied to the detection of DNA in spiked urine samples with recoveries of 96%-103% without interference from nonspecific fluorescence.