期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Transformer的宫颈异常细胞自动识别方法
1
作者 张峥 陈明销 +3 位作者 李新宇 程逸 申书伟 姚鹏 《中国激光》 EI CAS CSCD 北大核心 2024年第3期85-95,共11页
宫颈异常细胞与正常细胞在形态上存在较大相似性且细胞尺寸变化较大,这使得宫颈异常细胞的精准检测变得非常困难。鉴于此,开发了一种基于Transformer模型的宫颈异常细胞自动识别模型,以帮助病理学家作出更准确的诊断。提出了两种创新性... 宫颈异常细胞与正常细胞在形态上存在较大相似性且细胞尺寸变化较大,这使得宫颈异常细胞的精准检测变得非常困难。鉴于此,开发了一种基于Transformer模型的宫颈异常细胞自动识别模型,以帮助病理学家作出更准确的诊断。提出了两种创新性方法,一是一种改进的Transformer编码器结构,通过引入深度(DW)卷积来高效获取图像的特征,捕捉图像中的全局依赖信息;二是自适应的动态交并比(IOU)阈值,在模型训练的不同阶段使用不同的IOU阈值,实现尽可能多的有效检测,提升模型的收敛速度和检测精度。在宫颈异常细胞数据集上,通过消融实验,证明了改进的Transformer编码器和动态IOU阈值的有效性。此外,与已有的宫颈异常细胞识别方法相比,所提出的方法在平均精度指标上有明显的提高。实验结果表明,所提出的方法能够高效且准确地识别宫颈异常细胞,且能辅助病理专家提高诊断准确率和效率,具有应用到临床的潜力。 展开更多
关键词 医用光学 宫颈细胞病理图像 目标检测 医学图像处理
原文传递
基于改进RetinaNet的宫颈异常细胞检测算法 被引量:2
2
作者 刘润坤 党世杰 +6 位作者 张洪远 牛银银 米贯勋 李三华 陈振鑫 赵凌霄 李鹏 《中国激光》 EI CAS CSCD 北大核心 2023年第15期101-110,共10页
宫颈异常细胞特征细微难以提取、小目标容易漏检、细胞边界回归不准确导致异常细胞检测精度不高,鉴于此,本文提出了一种结合注意力的全尺度特征融合RetinaNet(AFF-RetinaNet)宫颈异常细胞检测算法.首先,采用ResNeSt-50作为特征提取网络... 宫颈异常细胞特征细微难以提取、小目标容易漏检、细胞边界回归不准确导致异常细胞检测精度不高,鉴于此,本文提出了一种结合注意力的全尺度特征融合RetinaNet(AFF-RetinaNet)宫颈异常细胞检测算法.首先,采用ResNeSt-50作为特征提取网络提取宫颈异常细胞的细微特征;其次,引入平衡特征金字塔(BFP)结构,对所有特征层进行全尺度融合,增强小目标的语义信息,并利用BFP中的非局部注意力模块获取图像的全局信息,以进一步增强特征空间的语义信息;最后,采用CIoU Loss作为回归分支的损失函数,以提高对异常细胞边界回归的准确率.另外,针对实际应用场景,基于AFF-RetinaNet算法实现了全视野宫颈细胞病理学图像(WSI)推理流程,并基于该推理流程对WSI中的异常细胞进行了检测.AFF-RetinaNet在宫颈异常细胞数据集上的平均精度均值(mAP)为83.4%,其中对小目标的mAP值(mAP-s)达到了24.4%,相较于基准RetinaNet算法分别提高了3.2个百分点和10.8个百分点.基于AFF-Retina的WSI推理结果在感兴趣区域中的mAP为70.8%.实验结果表明:AFF-RetinaNet算法可以增强对小尺寸异常细胞的检测能力,有效提升宫颈异常细胞的检测精度.基于AFF-RetinaNet的宫颈WSI推理流程可辅助医生快速定位高分辨率宫颈WSI中的异常细胞,有望减轻医生的阅片负担. 展开更多
关键词 医用光学 宫颈细胞病理图像 目标检测 小目标 特征融合 注意力机制
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部