期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Transformer的宫颈异常细胞自动识别方法
1
作者
张峥
陈明销
+3 位作者
李新宇
程逸
申书伟
姚鹏
《中国激光》
EI
CAS
CSCD
北大核心
2024年第3期85-95,共11页
宫颈异常细胞与正常细胞在形态上存在较大相似性且细胞尺寸变化较大,这使得宫颈异常细胞的精准检测变得非常困难。鉴于此,开发了一种基于Transformer模型的宫颈异常细胞自动识别模型,以帮助病理学家作出更准确的诊断。提出了两种创新性...
宫颈异常细胞与正常细胞在形态上存在较大相似性且细胞尺寸变化较大,这使得宫颈异常细胞的精准检测变得非常困难。鉴于此,开发了一种基于Transformer模型的宫颈异常细胞自动识别模型,以帮助病理学家作出更准确的诊断。提出了两种创新性方法,一是一种改进的Transformer编码器结构,通过引入深度(DW)卷积来高效获取图像的特征,捕捉图像中的全局依赖信息;二是自适应的动态交并比(IOU)阈值,在模型训练的不同阶段使用不同的IOU阈值,实现尽可能多的有效检测,提升模型的收敛速度和检测精度。在宫颈异常细胞数据集上,通过消融实验,证明了改进的Transformer编码器和动态IOU阈值的有效性。此外,与已有的宫颈异常细胞识别方法相比,所提出的方法在平均精度指标上有明显的提高。实验结果表明,所提出的方法能够高效且准确地识别宫颈异常细胞,且能辅助病理专家提高诊断准确率和效率,具有应用到临床的潜力。
展开更多
关键词
医用光学
宫颈细胞病理图像
目标检测
医学
图像
处理
原文传递
基于改进RetinaNet的宫颈异常细胞检测算法
被引量:
2
2
作者
刘润坤
党世杰
+6 位作者
张洪远
牛银银
米贯勋
李三华
陈振鑫
赵凌霄
李鹏
《中国激光》
EI
CAS
CSCD
北大核心
2023年第15期101-110,共10页
宫颈异常细胞特征细微难以提取、小目标容易漏检、细胞边界回归不准确导致异常细胞检测精度不高,鉴于此,本文提出了一种结合注意力的全尺度特征融合RetinaNet(AFF-RetinaNet)宫颈异常细胞检测算法.首先,采用ResNeSt-50作为特征提取网络...
宫颈异常细胞特征细微难以提取、小目标容易漏检、细胞边界回归不准确导致异常细胞检测精度不高,鉴于此,本文提出了一种结合注意力的全尺度特征融合RetinaNet(AFF-RetinaNet)宫颈异常细胞检测算法.首先,采用ResNeSt-50作为特征提取网络提取宫颈异常细胞的细微特征;其次,引入平衡特征金字塔(BFP)结构,对所有特征层进行全尺度融合,增强小目标的语义信息,并利用BFP中的非局部注意力模块获取图像的全局信息,以进一步增强特征空间的语义信息;最后,采用CIoU Loss作为回归分支的损失函数,以提高对异常细胞边界回归的准确率.另外,针对实际应用场景,基于AFF-RetinaNet算法实现了全视野宫颈细胞病理学图像(WSI)推理流程,并基于该推理流程对WSI中的异常细胞进行了检测.AFF-RetinaNet在宫颈异常细胞数据集上的平均精度均值(mAP)为83.4%,其中对小目标的mAP值(mAP-s)达到了24.4%,相较于基准RetinaNet算法分别提高了3.2个百分点和10.8个百分点.基于AFF-Retina的WSI推理结果在感兴趣区域中的mAP为70.8%.实验结果表明:AFF-RetinaNet算法可以增强对小尺寸异常细胞的检测能力,有效提升宫颈异常细胞的检测精度.基于AFF-RetinaNet的宫颈WSI推理流程可辅助医生快速定位高分辨率宫颈WSI中的异常细胞,有望减轻医生的阅片负担.
展开更多
关键词
医用光学
宫颈细胞病理图像
目标检测
小目标
特征融合
注意力机制
原文传递
题名
基于Transformer的宫颈异常细胞自动识别方法
1
作者
张峥
陈明销
李新宇
程逸
申书伟
姚鹏
机构
中国科学技术大学工程科学学院精密机械与精密仪器系
中国科学技术大学苏州高等研究院
中国科学技术大学微电子学院
出处
《中国激光》
EI
CAS
CSCD
北大核心
2024年第3期85-95,共11页
基金
安徽省自然科学基金(2308085MF219)。
文摘
宫颈异常细胞与正常细胞在形态上存在较大相似性且细胞尺寸变化较大,这使得宫颈异常细胞的精准检测变得非常困难。鉴于此,开发了一种基于Transformer模型的宫颈异常细胞自动识别模型,以帮助病理学家作出更准确的诊断。提出了两种创新性方法,一是一种改进的Transformer编码器结构,通过引入深度(DW)卷积来高效获取图像的特征,捕捉图像中的全局依赖信息;二是自适应的动态交并比(IOU)阈值,在模型训练的不同阶段使用不同的IOU阈值,实现尽可能多的有效检测,提升模型的收敛速度和检测精度。在宫颈异常细胞数据集上,通过消融实验,证明了改进的Transformer编码器和动态IOU阈值的有效性。此外,与已有的宫颈异常细胞识别方法相比,所提出的方法在平均精度指标上有明显的提高。实验结果表明,所提出的方法能够高效且准确地识别宫颈异常细胞,且能辅助病理专家提高诊断准确率和效率,具有应用到临床的潜力。
关键词
医用光学
宫颈细胞病理图像
目标检测
医学
图像
处理
Keywords
medical optics
cervical cytopathological images
object detection
medical image processing
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
原文传递
题名
基于改进RetinaNet的宫颈异常细胞检测算法
被引量:
2
2
作者
刘润坤
党世杰
张洪远
牛银银
米贯勋
李三华
陈振鑫
赵凌霄
李鹏
机构
中国科学技术大学生物医学工程学院(苏州)生命科学与医学部
中国科学院苏州生物医学工程技术研究所
河南赛诺特生物技术有限公司
出处
《中国激光》
EI
CAS
CSCD
北大核心
2023年第15期101-110,共10页
基金
苏州市基础研究试点项目(SJC2021022)。
文摘
宫颈异常细胞特征细微难以提取、小目标容易漏检、细胞边界回归不准确导致异常细胞检测精度不高,鉴于此,本文提出了一种结合注意力的全尺度特征融合RetinaNet(AFF-RetinaNet)宫颈异常细胞检测算法.首先,采用ResNeSt-50作为特征提取网络提取宫颈异常细胞的细微特征;其次,引入平衡特征金字塔(BFP)结构,对所有特征层进行全尺度融合,增强小目标的语义信息,并利用BFP中的非局部注意力模块获取图像的全局信息,以进一步增强特征空间的语义信息;最后,采用CIoU Loss作为回归分支的损失函数,以提高对异常细胞边界回归的准确率.另外,针对实际应用场景,基于AFF-RetinaNet算法实现了全视野宫颈细胞病理学图像(WSI)推理流程,并基于该推理流程对WSI中的异常细胞进行了检测.AFF-RetinaNet在宫颈异常细胞数据集上的平均精度均值(mAP)为83.4%,其中对小目标的mAP值(mAP-s)达到了24.4%,相较于基准RetinaNet算法分别提高了3.2个百分点和10.8个百分点.基于AFF-Retina的WSI推理结果在感兴趣区域中的mAP为70.8%.实验结果表明:AFF-RetinaNet算法可以增强对小尺寸异常细胞的检测能力,有效提升宫颈异常细胞的检测精度.基于AFF-RetinaNet的宫颈WSI推理流程可辅助医生快速定位高分辨率宫颈WSI中的异常细胞,有望减轻医生的阅片负担.
关键词
医用光学
宫颈细胞病理图像
目标检测
小目标
特征融合
注意力机制
Keywords
medical optics
cervical cytopathological image
object detection
small object
feature fusion
attention mechanism
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于Transformer的宫颈异常细胞自动识别方法
张峥
陈明销
李新宇
程逸
申书伟
姚鹏
《中国激光》
EI
CAS
CSCD
北大核心
2024
0
原文传递
2
基于改进RetinaNet的宫颈异常细胞检测算法
刘润坤
党世杰
张洪远
牛银银
米贯勋
李三华
陈振鑫
赵凌霄
李鹏
《中国激光》
EI
CAS
CSCD
北大核心
2023
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部