Major mineral hazard identifications should consider perilous types of fatal accidents in collieries from its definition, and then set existent hazardous objects and their relevant amount as referenced factors. Elimin...Major mineral hazard identifications should consider perilous types of fatal accidents in collieries from its definition, and then set existent hazardous objects and their relevant amount as referenced factors. Eliminating hazards in systems and decreasing risks are their essential purposes with help of hazard identification, risk evaluation and management. By pre-control on major hazards, fatal accidents are avoided, stuffs' safety and healthy are protected, levels of safe management are enhanced, and perpetual systems are built up finally. However, choosing the proper identification and evaluation is a problem all along. Based on specific condition in Jiangou Coal Mine, method of LEC was applied for hazard identification and evaluation in the pre-blasting process within horizontal section top-coal mechanized caving of steep seams. And control measures to of each hazard were put forward. The identification method combining qualitative and quantitative analysis. So, it is practical and operable for the method to develop the given scientific research and has a distinctive impact on high efficiency and safety products for pre-blasting in horizontal section top-coal mechanized caving of steep seams.展开更多
Low frequency infrasonic waves are emitted during the formation and movement of debris flows, which are detectable in a radius of several kilometers, thereby to serve as the precondition for their remote monitoring.Ho...Low frequency infrasonic waves are emitted during the formation and movement of debris flows, which are detectable in a radius of several kilometers, thereby to serve as the precondition for their remote monitoring.However, false message often arises from the simple mechanics of alarms under the ambient noise interference.To improve the accuracy of infrasound monitoring for early-warning against debris flows, it is necessary to analyze the monitor information to identify in them the infrasonic signals characteristic of debris flows.Therefore, a large amount of debris flow infrasound and ambient noises have been collected from different sources for analysis to sum up their frequency spectra, sound pressures, waveforms, time duration and other correlated characteristics so as to specify the key characteristic parameters for different sound sources in completing the development of the recognition system of debris flow infrasonic signals for identifying their possible existence in the monitor signals.The recognition performance of the system has been verified by simulating tests and long-term in-situ monitoring of debris flows in Jiangjia Gully,Dongchuan, China to be of high accuracy and applicability.The recognition system can provide the local government and residents with accurate precautionary information about debris flows in preparation for disaster mitigation and minimizing the loss of life and property.展开更多
Damage assessment for slopes using geographical information system(GIS) has been actively carried out by researchers working on several government organizations and research institutes in Korea. In this study, 596 slo...Damage assessment for slopes using geographical information system(GIS) has been actively carried out by researchers working on several government organizations and research institutes in Korea. In this study, 596 slope damages were examined to identify the types of damage associated with dip angles, dip directions, and heavy rainfall resulting from typhoons in South Korea. Heavy rainfall of 100 mm to 300 mm resulted in 80% at the investigated slope damages. A GIS database was developed for highways, rainfall, soil or rock geometry, and types of damage. A grid of rainfall intensity was generated from the records of maximum daily rainfall. Contours for slope damages and heavy rainfall using optimal GIS mesh dimensions were generated to visualize damage patterns and show substantially strong correlation of rainfall with slope damages. The combination of remote sensing with the GIS pattern recognition process described in this work are being expanded for a new generation of emergency response and rapid decision support systems.展开更多
Water inrush is one of the most serious geological hazards in underground engineering construction.In order to effectively prevent and control the occurrence of water inrush,a new attribute interval recognition theory...Water inrush is one of the most serious geological hazards in underground engineering construction.In order to effectively prevent and control the occurrence of water inrush,a new attribute interval recognition theory and method is proposed to systematically evaluate the risk of water inrush in karst tunnels.Its innovation mainly includes that the value of evaluation index is an interval rather than a certain value;the single-index attribute evaluation model is improved non-linearly based on the idea of normal distribution;the synthetic attribute interval analysis method based on improved intuitionistic fuzzy theory is proposed.The TFN-AHP method is proposed to analyze the weight of evaluation index.By analyzing geological factors and engineering factors in tunnel zone,a multi-grade hierarchical index system for tunnel water inrush risk assessment is established.The proposed method is applied to ventilation incline of Xiakou tunnel,and its rationality and practicability is verified by comparison with field situation and evaluation results of other methods.In addition,the results evaluated by this method,which considers that water inrush is a complex non-linear system and the geological conditions have spatial variability,are more accurate and reliable.And it has good applicability in solving the problem of certain and uncertain problem.展开更多
Encroachment, which can generally be defined as appropriation of the other's right, comes first as one of the most traumatic incidents among sexual crimes. When the statistical data about rape are examined in Turkey,...Encroachment, which can generally be defined as appropriation of the other's right, comes first as one of the most traumatic incidents among sexual crimes. When the statistical data about rape are examined in Turkey, it is seen that the ratios of rape incidents are at an extent that cannot be underestimated. The problem of rape is covered in some series which are broadcast on TV and popular among wide range of audience in Turkey. Fatmagiil 'iinSu^u Ne?, Oyle Bir Geger Zaman Ki and ]fret, which are among these series, are chosen as the sample in this study. Since it is certainly one of the important functions of media to raise awareness of the public, dealing with rape in series and films as a social problem is usual and even crucial. However, the basic issue here is how this incident is handled and what kind of message is given to the audience, who takes the main characters as model. The aim of this study is to explore how the rape incidents are covered and how the solution is reached in these aforementioned series. In this study, these three television series are examined through purposeful sampling method and also, the answers to the questions mentioned as the aims of this study are analyzed through a feminist perspective. As a result of this analysis, it has been found out that even though rape incident is one of the worst events a woman can experience in these series, it is turned into a crime that can be forgiven and the reason of forgiving is love.展开更多
For the release of hazardous contaminant indoors, source identification is critical for developing effective response measures. A method which can quickly and accurately identify the position, emission rate, and relea...For the release of hazardous contaminant indoors, source identification is critical for developing effective response measures. A method which can quickly and accurately identify the position, emission rate, and release time of a single constant contaminant source by using real sensors was presented. The method was numerically demonstrated and validated by a case study of contaminant release in a three-dimensional office. The effects of the measurement errors and total sampling period of sensor on the performance of source identification were thoroughly studied. The results indicate that the adverse effects of the measurement errors can be mitigated by extending the total sampling period. For reaching a desirable accuracy of source identification, the total sampling period should exceed a certain threshold, which can be determined by repeatedly running the identification method tmtil the results tend to be stable. The method presented can contribute to develop an onsite source identification system for protecting occupants from indoor releases.展开更多
Objective: To understand the situation of nursing students was stabbed by sharp instrument,in order to provide a scientific basis to take protective measures.Method:By using a self-designed questionnaire.The 100 nur...Objective: To understand the situation of nursing students was stabbed by sharp instrument,in order to provide a scientific basis to take protective measures.Method:By using a self-designed questionnaire.The 100 nursing students were randomly selected from a hospital for retrospective investigation.There are 98 valid data.Results: The data shows that sharp instrument injury is more common in nursing students. Nursing students' protection consciousness is low, and protective ability is poor.Conclusion: Nursing students awareness of self- protection to sharp instrument injury is not enough,in order to avoid the risk of infection of nursing students occupation.When they entered the clinics, practice of systematic pre occupation safety education is very necessary;and the school and the hospital should actively implement the management standardized operation regulations;and put up student occupation injury management regulations;to improve the safety performance of nursing equipment.展开更多
With rapid economic and social development, soil contamination arising from heavy metals has become a serious problem in many parts of China. We collected a total of 445 samples (0-20 cm) at the nodes of a 2 kmx2 km...With rapid economic and social development, soil contamination arising from heavy metals has become a serious problem in many parts of China. We collected a total of 445 samples (0-20 cm) at the nodes of a 2 kmx2 km grid in surface soils of Rizhao city, and analyzed sources and risk pattern of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn). The combination of Multivariate statistics analysis and Geostatistical methods was applied to identify the sources and hazardous risk of heavy metals in soils. The result indicated that Cr, Ni, Co, Mn, Cu, and As were mainly controlled by parent materials and came from natural sources. Cd and Hg originated from anthropogenic sources. Pb and Zn, belonging to different groups in multivariate analysis, were associated with joint effect of parent materials and human inputs. Ordinary Kriging and Indicator Kriging suggested that single element and elements association from the same principal components had similar spatial distribution. Through comprehensive assessment on all elements, we also found the high risk areas were located in the populated urban areas and western study area, which could be attributed to the higher geological background in the western part and strong human interference in the eastern part.展开更多
Structural health monitoring (SHM) has become a hot and intensively researched field in civil engineering. Thereinto, damage identification play an important role in maintaining structural integrity and safety. Many...Structural health monitoring (SHM) has become a hot and intensively researched field in civil engineering. Thereinto, damage identification play an important role in maintaining structural integrity and safety. Many effective methods have been proposed for damage identification. However, accurate global identification of large real-world structures is not easy due to their com- plex and often unknown boundary conditions, nonlinear components, insensitivity of glohal response to localized damages, etc. Furthermore, global identification often requires lots of sensors and involves large number of unknowns. This is costly, rarely feasible in practice, and usually yields severely ill-conditioned identification problems. Substructuring approach is a possible solution: substructuring methods can focus on local small substructures; they need only a few sensors placed on the substruc- ture and yield smaller and numerically much more feasible identification problems. This paper proposed an improved sub- structure method using local free response for substructure damage identification. The virtual supports are constructed by Sub- structure Isolation Method (SIM) using the linear combination of the substructural responses. The influence of the global errors is isolated by adding the virtual supports on the main degree of freedoms (DOFs) of the substructure. Through the correlation analysis, the substructural modes are selected and used for damage identification of the substructure. A plain model of cable stayed bridge is used for the verification of the proposed method.展开更多
基金Supported by the National Natural Science Foundation of China (1100202 l) the Doctoral Subject Foundation of the Ministry of Education of China (20070008012) the National High Technology Research and Development Program (2008AA062104)
文摘Major mineral hazard identifications should consider perilous types of fatal accidents in collieries from its definition, and then set existent hazardous objects and their relevant amount as referenced factors. Eliminating hazards in systems and decreasing risks are their essential purposes with help of hazard identification, risk evaluation and management. By pre-control on major hazards, fatal accidents are avoided, stuffs' safety and healthy are protected, levels of safe management are enhanced, and perpetual systems are built up finally. However, choosing the proper identification and evaluation is a problem all along. Based on specific condition in Jiangou Coal Mine, method of LEC was applied for hazard identification and evaluation in the pre-blasting process within horizontal section top-coal mechanized caving of steep seams. And control measures to of each hazard were put forward. The identification method combining qualitative and quantitative analysis. So, it is practical and operable for the method to develop the given scientific research and has a distinctive impact on high efficiency and safety products for pre-blasting in horizontal section top-coal mechanized caving of steep seams.
基金supported by the National Science and Technology Support Program(2011BAK12B00)the International Cooperation Project of the Department of Science and Technology of Sichuan Province(2009HH0005)the Project of the Department of Science and Technology of Sichuan Province(2015JY0235)
文摘Low frequency infrasonic waves are emitted during the formation and movement of debris flows, which are detectable in a radius of several kilometers, thereby to serve as the precondition for their remote monitoring.However, false message often arises from the simple mechanics of alarms under the ambient noise interference.To improve the accuracy of infrasound monitoring for early-warning against debris flows, it is necessary to analyze the monitor information to identify in them the infrasonic signals characteristic of debris flows.Therefore, a large amount of debris flow infrasound and ambient noises have been collected from different sources for analysis to sum up their frequency spectra, sound pressures, waveforms, time duration and other correlated characteristics so as to specify the key characteristic parameters for different sound sources in completing the development of the recognition system of debris flow infrasonic signals for identifying their possible existence in the monitor signals.The recognition performance of the system has been verified by simulating tests and long-term in-situ monitoring of debris flows in Jiangjia Gully,Dongchuan, China to be of high accuracy and applicability.The recognition system can provide the local government and residents with accurate precautionary information about debris flows in preparation for disaster mitigation and minimizing the loss of life and property.
基金supported by the 2012 Inje University research grant
文摘Damage assessment for slopes using geographical information system(GIS) has been actively carried out by researchers working on several government organizations and research institutes in Korea. In this study, 596 slope damages were examined to identify the types of damage associated with dip angles, dip directions, and heavy rainfall resulting from typhoons in South Korea. Heavy rainfall of 100 mm to 300 mm resulted in 80% at the investigated slope damages. A GIS database was developed for highways, rainfall, soil or rock geometry, and types of damage. A grid of rainfall intensity was generated from the records of maximum daily rainfall. Contours for slope damages and heavy rainfall using optimal GIS mesh dimensions were generated to visualize damage patterns and show substantially strong correlation of rainfall with slope damages. The combination of remote sensing with the GIS pattern recognition process described in this work are being expanded for a new generation of emergency response and rapid decision support systems.
基金Project(51722904)supported by the National Science Fund for Excellent Young Scholars,ChinaProject(51679131)supported by the National Natural Science Foundation of China+2 种基金Project(2019JZZY010601)supported by the Shandong Provincial Key Research and Development Program(Major Scientific and Technological Innovation Project),ChinaProject(KJ1712304)supported by the Science and Technology Research Program of Chongqing Municipal Education Commission,ChinaProject(2016XJQN13)supported by the Yangtze Normal University Research Project,China
文摘Water inrush is one of the most serious geological hazards in underground engineering construction.In order to effectively prevent and control the occurrence of water inrush,a new attribute interval recognition theory and method is proposed to systematically evaluate the risk of water inrush in karst tunnels.Its innovation mainly includes that the value of evaluation index is an interval rather than a certain value;the single-index attribute evaluation model is improved non-linearly based on the idea of normal distribution;the synthetic attribute interval analysis method based on improved intuitionistic fuzzy theory is proposed.The TFN-AHP method is proposed to analyze the weight of evaluation index.By analyzing geological factors and engineering factors in tunnel zone,a multi-grade hierarchical index system for tunnel water inrush risk assessment is established.The proposed method is applied to ventilation incline of Xiakou tunnel,and its rationality and practicability is verified by comparison with field situation and evaluation results of other methods.In addition,the results evaluated by this method,which considers that water inrush is a complex non-linear system and the geological conditions have spatial variability,are more accurate and reliable.And it has good applicability in solving the problem of certain and uncertain problem.
文摘Encroachment, which can generally be defined as appropriation of the other's right, comes first as one of the most traumatic incidents among sexual crimes. When the statistical data about rape are examined in Turkey, it is seen that the ratios of rape incidents are at an extent that cannot be underestimated. The problem of rape is covered in some series which are broadcast on TV and popular among wide range of audience in Turkey. Fatmagiil 'iinSu^u Ne?, Oyle Bir Geger Zaman Ki and ]fret, which are among these series, are chosen as the sample in this study. Since it is certainly one of the important functions of media to raise awareness of the public, dealing with rape in series and films as a social problem is usual and even crucial. However, the basic issue here is how this incident is handled and what kind of message is given to the audience, who takes the main characters as model. The aim of this study is to explore how the rape incidents are covered and how the solution is reached in these aforementioned series. In this study, these three television series are examined through purposeful sampling method and also, the answers to the questions mentioned as the aims of this study are analyzed through a feminist perspective. As a result of this analysis, it has been found out that even though rape incident is one of the worst events a woman can experience in these series, it is turned into a crime that can be forgiven and the reason of forgiving is love.
基金Project(50908128) supported by the National Natural Science Foundation of ChinaProject(51125030) supported by the National Science Foundation for Distinguished Young Scholars in China
文摘For the release of hazardous contaminant indoors, source identification is critical for developing effective response measures. A method which can quickly and accurately identify the position, emission rate, and release time of a single constant contaminant source by using real sensors was presented. The method was numerically demonstrated and validated by a case study of contaminant release in a three-dimensional office. The effects of the measurement errors and total sampling period of sensor on the performance of source identification were thoroughly studied. The results indicate that the adverse effects of the measurement errors can be mitigated by extending the total sampling period. For reaching a desirable accuracy of source identification, the total sampling period should exceed a certain threshold, which can be determined by repeatedly running the identification method tmtil the results tend to be stable. The method presented can contribute to develop an onsite source identification system for protecting occupants from indoor releases.
文摘Objective: To understand the situation of nursing students was stabbed by sharp instrument,in order to provide a scientific basis to take protective measures.Method:By using a self-designed questionnaire.The 100 nursing students were randomly selected from a hospital for retrospective investigation.There are 98 valid data.Results: The data shows that sharp instrument injury is more common in nursing students. Nursing students' protection consciousness is low, and protective ability is poor.Conclusion: Nursing students awareness of self- protection to sharp instrument injury is not enough,in order to avoid the risk of infection of nursing students occupation.When they entered the clinics, practice of systematic pre occupation safety education is very necessary;and the school and the hospital should actively implement the management standardized operation regulations;and put up student occupation injury management regulations;to improve the safety performance of nursing equipment.
基金China State-Sponsored Postgraduate Study Abroad Program,No.201306190053National Natural Science Foundation of China,No.41101079+1 种基金The Program B for Outstanding PhD Candidate of Nanjing University,No.2014001B008The Program for Graduate Student’s Research Innovation of Jiangsu Province,No.CXLX13-051
文摘With rapid economic and social development, soil contamination arising from heavy metals has become a serious problem in many parts of China. We collected a total of 445 samples (0-20 cm) at the nodes of a 2 kmx2 km grid in surface soils of Rizhao city, and analyzed sources and risk pattern of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn). The combination of Multivariate statistics analysis and Geostatistical methods was applied to identify the sources and hazardous risk of heavy metals in soils. The result indicated that Cr, Ni, Co, Mn, Cu, and As were mainly controlled by parent materials and came from natural sources. Cd and Hg originated from anthropogenic sources. Pb and Zn, belonging to different groups in multivariate analysis, were associated with joint effect of parent materials and human inputs. Ordinary Kriging and Indicator Kriging suggested that single element and elements association from the same principal components had similar spatial distribution. Through comprehensive assessment on all elements, we also found the high risk areas were located in the populated urban areas and western study area, which could be attributed to the higher geological background in the western part and strong human interference in the eastern part.
基金support by the National Natural Science Foundation of China(NSFC)(Grand No.51108057)the National Basic Research Program of China(973 Program)(Grand No.2013CB036305)+4 种基金the Fundamental Research Funds for the Central Universities(China)(Grand No.DUT13LK13)Special Financial Grant from the China Postdoctoral Science Foundation(Grand No.2012T50255)the Project of National Key Technology R&D Program(China)(Grand Nos.2011BAK02B01,2011BAK02B03,2006BAJ03B05)the Polish National Science Centre Project"AIA"(Grand No.DEC-2012/05/B/ST8/02971)the FP7 EU project Smart-Nest(Grand No.PIAPP-GA-2011-28499)
文摘Structural health monitoring (SHM) has become a hot and intensively researched field in civil engineering. Thereinto, damage identification play an important role in maintaining structural integrity and safety. Many effective methods have been proposed for damage identification. However, accurate global identification of large real-world structures is not easy due to their com- plex and often unknown boundary conditions, nonlinear components, insensitivity of glohal response to localized damages, etc. Furthermore, global identification often requires lots of sensors and involves large number of unknowns. This is costly, rarely feasible in practice, and usually yields severely ill-conditioned identification problems. Substructuring approach is a possible solution: substructuring methods can focus on local small substructures; they need only a few sensors placed on the substruc- ture and yield smaller and numerically much more feasible identification problems. This paper proposed an improved sub- structure method using local free response for substructure damage identification. The virtual supports are constructed by Sub- structure Isolation Method (SIM) using the linear combination of the substructural responses. The influence of the global errors is isolated by adding the virtual supports on the main degree of freedoms (DOFs) of the substructure. Through the correlation analysis, the substructural modes are selected and used for damage identification of the substructure. A plain model of cable stayed bridge is used for the verification of the proposed method.