Mutation (substitution, deletion, insertion, etc.) in nucleotide acid causes the maximal sequence lengths of exact match (MALE) between paralogous members from a duplicate event to become shorter during evolution. In ...Mutation (substitution, deletion, insertion, etc.) in nucleotide acid causes the maximal sequence lengths of exact match (MALE) between paralogous members from a duplicate event to become shorter during evolution. In this work, MALE changes between members of 26 gene families from four representative species (Arabidopsis thaliana, Oryza sativa, Mus mus- culus and Homo sapiens) were investigated. Comparative study of paralogous’ MALE and amino acid substitution rate (dA<0.5) indicated that a close relationship existed between them. The results suggested that MALE could be a sound evolutionary scale for the divergent time for paralogous genes during their early evolution. A reference table between MALE and divergent time for the four species was set up, which would be useful widely, for large-scale genome alignment and comparison. As an example, de- tection of large-scale duplication events of rice genome based on the table was illustrated.展开更多
Plants adapt to phosphorus (P) deficiency through a complex of biological processes and many genes are involved. Tomato (Solanum lycopersicum L. 'Hezuo906') plants were selected to grown hydroponically to study ...Plants adapt to phosphorus (P) deficiency through a complex of biological processes and many genes are involved. Tomato (Solanum lycopersicum L. 'Hezuo906') plants were selected to grown hydroponically to study the temporal and spatial gene expression patterns of the 14-3-3 gene family and their roles in response to P deficiency in tomato plants. Using real-time reverse-transcriptase polymerase chain reaction (RT-PCR), we investigated the expression profiles in different tissues (root, stem and leaf) at short-term and long-term P-deficient stress phases. Results revealed that i) four members of 14-3-3 gene family (TFT1, TFT4, TFT6 and TFTT) were involved in the adaptation of tomato plants to P deficiency, ii) TFT7 responded quickly to P deficiency in the root, while TFT6 responded slowly to P deficiency in the leaf, iii) expression response of TFT4 to P-deficient stress was widely distributed in different tissues (root, stem and leaf) while TFT8 only displayed stem-specific expression, and iv) temporal and tissues-specific expression patterns to P deficiency suggested that isoform specificity existed in tomato 14-3-3 gene family. We propose that TFT7 (one member of e-like group in tomato 14-3-3 family) is the early responsive gene and may play a role in the adaptation of tomato plants to shortterm P deficiency, while TFT6 (one member of non-e group in tomato 14-3-3 family) is the later responsive gene and may play a role in the adaptation of tomato plants to long-term P deficiency.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 30270810, 90208022 and 30471067) and IBM Shared University Research (Life Science), China
文摘Mutation (substitution, deletion, insertion, etc.) in nucleotide acid causes the maximal sequence lengths of exact match (MALE) between paralogous members from a duplicate event to become shorter during evolution. In this work, MALE changes between members of 26 gene families from four representative species (Arabidopsis thaliana, Oryza sativa, Mus mus- culus and Homo sapiens) were investigated. Comparative study of paralogous’ MALE and amino acid substitution rate (dA<0.5) indicated that a close relationship existed between them. The results suggested that MALE could be a sound evolutionary scale for the divergent time for paralogous genes during their early evolution. A reference table between MALE and divergent time for the four species was set up, which would be useful widely, for large-scale genome alignment and comparison. As an example, de- tection of large-scale duplication events of rice genome based on the table was illustrated.
基金Supported by the National Natural Science Foundation of China (Nos. 31272229 and 41171234)the National Basic Research Program (973 Program) of China (No. 2013CB127402)
文摘Plants adapt to phosphorus (P) deficiency through a complex of biological processes and many genes are involved. Tomato (Solanum lycopersicum L. 'Hezuo906') plants were selected to grown hydroponically to study the temporal and spatial gene expression patterns of the 14-3-3 gene family and their roles in response to P deficiency in tomato plants. Using real-time reverse-transcriptase polymerase chain reaction (RT-PCR), we investigated the expression profiles in different tissues (root, stem and leaf) at short-term and long-term P-deficient stress phases. Results revealed that i) four members of 14-3-3 gene family (TFT1, TFT4, TFT6 and TFTT) were involved in the adaptation of tomato plants to P deficiency, ii) TFT7 responded quickly to P deficiency in the root, while TFT6 responded slowly to P deficiency in the leaf, iii) expression response of TFT4 to P-deficient stress was widely distributed in different tissues (root, stem and leaf) while TFT8 only displayed stem-specific expression, and iv) temporal and tissues-specific expression patterns to P deficiency suggested that isoform specificity existed in tomato 14-3-3 gene family. We propose that TFT7 (one member of e-like group in tomato 14-3-3 family) is the early responsive gene and may play a role in the adaptation of tomato plants to shortterm P deficiency, while TFT6 (one member of non-e group in tomato 14-3-3 family) is the later responsive gene and may play a role in the adaptation of tomato plants to long-term P deficiency.