To evaluate transmission rate of highly dynamic space networks,a new method for studying space network capacity is proposed in this paper. Using graph theory,network capacity is defined as the maximum amount of flows ...To evaluate transmission rate of highly dynamic space networks,a new method for studying space network capacity is proposed in this paper. Using graph theory,network capacity is defined as the maximum amount of flows ground stations can receive per unit time. Combined with a hybrid constellation model,network capacity is calculated and further analyzed for practical cases. Simulation results show that network capacity will increase to different extents as link capacity,minimum ground elevation constraint and satellite onboard processing capability change. Considering the efficiency and reliability of communication networks,how to scientifically design satellite networks is also discussed.展开更多
With the development of large numbers broadband Internet access,global satellite communications is moving towards High Throughput Satellites(HTS).Now,USA,Canada,Europe,Thailand,Japan,United Arab Emirates,Australia hav...With the development of large numbers broadband Internet access,global satellite communications is moving towards High Throughput Satellites(HTS).Now,USA,Canada,Europe,Thailand,Japan,United Arab Emirates,Australia have already developed HTS systems.However,there is little research to analyze the factors influencing high throughput.Thus,from the design perspective,the throughput of HTS and influencing factors are calculated and compared at a system level.Finally,the application of HTS is analyzed and forecasted.展开更多
Delay/Disruption-Tolerant Networking(DTN) originated from research on Interplanetary Internet and still today space applications are the most important application field and research stimulus. This paper investigates ...Delay/Disruption-Tolerant Networking(DTN) originated from research on Interplanetary Internet and still today space applications are the most important application field and research stimulus. This paper investigates DTN communications between the Earth and the far side of the Moon, by means of a lunar orbiter acting as relay. After an introductory part, the paper presents a comprehensive analysis of the DTN performance that can be achieved on the identified communication scenario. The focus is on the evaluation of the stateof-the-art ability of Interplanetary Overlay Network(ION), the NASA DTN implementation of Bundle Protocol(BP) and Contact Graph Routing(CGR), to meet the many challenges of the space communication scenario investigated(and more generally of a future interplaynetary Internet): intermittent links, network partitioning, scarce bandwidth, long delays, dynamic routing, handling of high priority and emergency traffic, interoperability issues. A study of security threats and Bundle Security Protocol(BSP) countermeasures complete the work.The many results provided, confirm the essential role of DTN in future space communications.展开更多
On board processing(OBP) satellite systems have obtained more and more attentions in recent years because of their high efficiency and performance.However,the OBP transponders are very sensitive to the high energy par...On board processing(OBP) satellite systems have obtained more and more attentions in recent years because of their high efficiency and performance.However,the OBP transponders are very sensitive to the high energy particles in the space radiation environments.Single event upset(SEU)is one of the major radiation effects,which influences the satellite reliability greatly.Triple modular redundancy(TMR) is a classic and efficient method to mask SEUs.However,TMR uses three identical modules and a comparison logic,the circuit size becomes unacceptable,especially in the resource limited environments such as OBP systems.Considering that,a new SEU-tolerant method based on residue code and high-level synthesis(HLS) is proposed,and the new method is applied to FIR filters,which are typical structures in the OBP systems.The simulation results show that,for an applicable HLS scheduling scheme,area reduction can be reduced by 48.26%compared to TMR,while fault missing rate is 0.15%.展开更多
Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which ...Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which suffer from illumination, rotation, and source differences. The scale-invariant feature transform (SIFT) algorithm has been used successfully in satellite image registration problems. Also, many researchers have applied a local SIFT descriptor to improve the image retrieval process. Despite its robustness, this algorithm has some difficulties with the quality and quantity of the extracted local feature points in multisource remote sensing. Furthermore, high dimensionality of the local features extracted by SIFT results in time-consuming computational processes alongside high storage requirements for saving the relevant information, which are important factors in content-based image retrieval (CBIR) applications. In this paper, a novel method is introduced to transform the local SIFT features to global features for multisource remote sensing. The quality and quantity of SIFT local features have been enhanced by applying contrast equalization on images in a pre-processing stage. Considering the local features of each image in the reference database as a separate class, linear discriminant analysis (LDA) is used to transform the local features to global features while reducing di- mensionality of the feature space. This will also significantly reduce the computational time and storage required. Applying the trained kernel on verification data and mapping them showed a successful retrieval rate of 91.67% for test feature points.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.6137110061001093+6 种基金61401118)the Natural Science Foundation of Shandong Province(Grant No.ZR2014FP016)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2011114HIT.NSRIF.2013136HIT.NSRIF.2016100)the Scientific Research Foundation of Harbin Institute of Technology at Weihai(Grant No.HIT(WH)201409HIT(WH)201410)
文摘To evaluate transmission rate of highly dynamic space networks,a new method for studying space network capacity is proposed in this paper. Using graph theory,network capacity is defined as the maximum amount of flows ground stations can receive per unit time. Combined with a hybrid constellation model,network capacity is calculated and further analyzed for practical cases. Simulation results show that network capacity will increase to different extents as link capacity,minimum ground elevation constraint and satellite onboard processing capability change. Considering the efficiency and reliability of communication networks,how to scientifically design satellite networks is also discussed.
文摘With the development of large numbers broadband Internet access,global satellite communications is moving towards High Throughput Satellites(HTS).Now,USA,Canada,Europe,Thailand,Japan,United Arab Emirates,Australia have already developed HTS systems.However,there is little research to analyze the factors influencing high throughput.Thus,from the design perspective,the throughput of HTS and influencing factors are calculated and compared at a system level.Finally,the application of HTS is analyzed and forecasted.
文摘Delay/Disruption-Tolerant Networking(DTN) originated from research on Interplanetary Internet and still today space applications are the most important application field and research stimulus. This paper investigates DTN communications between the Earth and the far side of the Moon, by means of a lunar orbiter acting as relay. After an introductory part, the paper presents a comprehensive analysis of the DTN performance that can be achieved on the identified communication scenario. The focus is on the evaluation of the stateof-the-art ability of Interplanetary Overlay Network(ION), the NASA DTN implementation of Bundle Protocol(BP) and Contact Graph Routing(CGR), to meet the many challenges of the space communication scenario investigated(and more generally of a future interplaynetary Internet): intermittent links, network partitioning, scarce bandwidth, long delays, dynamic routing, handling of high priority and emergency traffic, interoperability issues. A study of security threats and Bundle Security Protocol(BSP) countermeasures complete the work.The many results provided, confirm the essential role of DTN in future space communications.
基金Supported by the National S&T Major Project(No.2011ZX03003-003-01,2011ZX03004-004)the National Basic Research Program of China(No.2012CB316002)
文摘On board processing(OBP) satellite systems have obtained more and more attentions in recent years because of their high efficiency and performance.However,the OBP transponders are very sensitive to the high energy particles in the space radiation environments.Single event upset(SEU)is one of the major radiation effects,which influences the satellite reliability greatly.Triple modular redundancy(TMR) is a classic and efficient method to mask SEUs.However,TMR uses three identical modules and a comparison logic,the circuit size becomes unacceptable,especially in the resource limited environments such as OBP systems.Considering that,a new SEU-tolerant method based on residue code and high-level synthesis(HLS) is proposed,and the new method is applied to FIR filters,which are typical structures in the OBP systems.The simulation results show that,for an applicable HLS scheduling scheme,area reduction can be reduced by 48.26%compared to TMR,while fault missing rate is 0.15%.
文摘Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which suffer from illumination, rotation, and source differences. The scale-invariant feature transform (SIFT) algorithm has been used successfully in satellite image registration problems. Also, many researchers have applied a local SIFT descriptor to improve the image retrieval process. Despite its robustness, this algorithm has some difficulties with the quality and quantity of the extracted local feature points in multisource remote sensing. Furthermore, high dimensionality of the local features extracted by SIFT results in time-consuming computational processes alongside high storage requirements for saving the relevant information, which are important factors in content-based image retrieval (CBIR) applications. In this paper, a novel method is introduced to transform the local SIFT features to global features for multisource remote sensing. The quality and quantity of SIFT local features have been enhanced by applying contrast equalization on images in a pre-processing stage. Considering the local features of each image in the reference database as a separate class, linear discriminant analysis (LDA) is used to transform the local features to global features while reducing di- mensionality of the feature space. This will also significantly reduce the computational time and storage required. Applying the trained kernel on verification data and mapping them showed a successful retrieval rate of 91.67% for test feature points.