Utilizing the character of chaos, the sensitivity to the initial conditions, the concept and the structure of so-called chaotic transducer based on Tent map is provided in this paper creatively. The possibility of app...Utilizing the character of chaos, the sensitivity to the initial conditions, the concept and the structure of so-called chaotic transducer based on Tent map is provided in this paper creatively. The possibility of applying the basic theory of symbolic dynamics to the measurement is presented and proved. Then, the theoretical model of chaotic transducer is realized by using the switched capacitor and the basic experimental results are given. The transducer has such characters as high sensitivity, resolution, the simple structure and combining signal amplification with A/D. The new area of the application of chaos is exploited. Meanwhile, it provides a new method of exploring the structure of new type transducer.展开更多
A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tun...A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tuning techniques (4-bit binary switch-capacitor array). The measured phase noise is - 118.17dBc/Hz at a 1MHz offset from a 2. 158GHz carrier. With the presented improved switch,the phase noise varies no more than 3dB at different digital control bits. The phase noise changes only by about 2dB in the tuning range because of the pn-junctions as the varactors. The VCO draws a current of about 2. lmA from a 1.8V power supply and works normally with a 1.5V power supply.展开更多
An optimized design of the monolithic switched capacitor DC-DC converter is presented.The general topologic circuit and its basic operating principles are discussed theoretically.Circuit equivalent resistance regulati...An optimized design of the monolithic switched capacitor DC-DC converter is presented.The general topologic circuit and its basic operating principles are discussed theoretically.Circuit equivalent resistance regulation method is proposed as a feasible method to design the on-chip converters.N-channel MOSFETs,instead of Schottky diodes,are used as the diodes in the converters because of their processing compatibility in monolithic fabrication.One more manufacture step,however,is expected to adjust the threshold voltage of the MOSFETs for improving output characteristics of the converters.As an example,a step-up switched-capacitor converter is fabricated in a 2μm p-well double-poly single-metal CMOS technology with breakdown voltage of 15V.Test results indicate that a single sampling cell with 0.4mm 2 of die size can deliver energy up to 0.63mW at 5V output under the condition of 3V input.Efficiency of the tested sample is 68% at 9.8MHz switching frequency...展开更多
A 16 bit stereo audio novel stability fifth-order ∑△ A/D converter that consists of switched capacitor ∑△ modulators, a decimation filter, and a bandgap circuit is proposed. A method for the stabilization of a hig...A 16 bit stereo audio novel stability fifth-order ∑△ A/D converter that consists of switched capacitor ∑△ modulators, a decimation filter, and a bandgap circuit is proposed. A method for the stabilization of a high order single stage ∑△ modulator is also proposed. A new multistage comb filter is used for the front end decimation filter. The ∑△ A/D converter achieves a peak SNR of 96dB and a dynamic range of 96dB. The ADC was implemented in 0. 5μm 5V CMOS technology. The chip die area occupies only 4. 1mm × 2.4mm and dissipates 90mW.展开更多
An integrated 3.3V/1.2V SC DC-DC converter operating under 10MHz with a fixed duty radio of 0.5 is presented.To improve the output current of the converter,CMOS technology is adopted to fabricate the switching devices...An integrated 3.3V/1.2V SC DC-DC converter operating under 10MHz with a fixed duty radio of 0.5 is presented.To improve the output current of the converter,CMOS technology is adopted to fabricate the switching devices,and mutually compensatory circuitry technology is also employed to double the output current furthermore.The simulation results using Hspice simulation software,show that the output currents of a single unit circuit and two unit circuits connected in a mutually compensatory manner of the improved converter is about 12.5mA and 26mA,respectively.The power conversion efficiency of the mutually compensatory circuit can amount to 73%,while its output voltage ripple is less than 1.5%.The converter is fabricated in standard Rohm 0.35μm CMOS technology in Tokyo University of Japan.The test result indicates that the output current of 9.8mA can be obtained from a single unit circuit of the improved converter.展开更多
A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity re...A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity resuiting from threshold voltage variation, which has not been accomplished in earlier low-voltage sampling switches. This is achieved by adopting a replica transistor with the same threshold voltage as the sampling transistor. The effectiveness of this technique is demonstrated by a prototype design of a sampling switch in 0. 35μm. The proposed sampling switch achieves a spurious free dynamic range of 111dB for a 0. 2MHz, 1.2Vp-p input signal, sampled at a rate of 2MS/s,about 18dB over the Bootstrapped switch. Also, the on-resistance variation is reduced by 90%. This method is especially useful for low-voltage, high resolution ADCs, which is a hot topic today.展开更多
This paper presents a fully integrated 4 8GHz VCO with an invention——symmetrical noise filter technique.This VCO,with relatively low phase noise and large tuning range of 716MHz,is fabricated with the 0 25μm SMIC...This paper presents a fully integrated 4 8GHz VCO with an invention——symmetrical noise filter technique.This VCO,with relatively low phase noise and large tuning range of 716MHz,is fabricated with the 0 25μm SMIC CMOS process.The oscillator consumes 6mA from 2 5V supply.Another conventional VCO is also designed and simulated without symmetrical noise filter on the same process,which also consumes 6mA current and is with the same tuning.Simulation result describes that the first VCO’ phase noise is 6dBc/Hz better than the latter’s at the same offset frequency from 4 8GHz.Measured phase noise at 1MHz away from the carrier in this 4 8GHz VCO with symmetrical noise filter is -123 66dBc/Hz.This design is suitable for the usage in a phase locked loop and other consumer electronics.It is amenable for future technologies and allows easy porting to different CMOS manufacturing process.展开更多
For the high resolution required in a digital interface circuit of an accelerometer used in feeble gravity measurement, a switched-capacitor (SC) sigma-delta modulator (SDM) is proposed. Based on the principle and...For the high resolution required in a digital interface circuit of an accelerometer used in feeble gravity measurement, a switched-capacitor (SC) sigma-delta modulator (SDM) is proposed. Based on the principle and the topology structure of the SDMs, the influence of oversampling ratio, bits of an internal quantizer and the cascaded structure on weak signal detecting precision is analyzed, and an ideal low-distortion SDM with a second-order 1-bit structure satisfying the high- resolution interface circuit of an accelerometer is designed. With the research on non-idealities of each SDM block in the SC circuit implementation and their impacts on power consumption, the realized parameters of low-power SDMs based on different bandwidths are devised and the power consumption of each SDM is estimated. Time-domain behavioral simulation is explored based on Simulink. The results demonstrate that a 21- bit resolution of the designed SDMs can be achieved on the premise of low power, and the parameters for the circuit implementation can be directed to the transistor-level circuit design.展开更多
The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to...The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to obtain a wide band and a large tuning range,a parallel switched capacitor bank is added in the LC tank.The proposed VCO is implemented in SMIC 0.18-μm RF CMOS technology and the chip area is 750 μm×560 μm,including the test buffer circuit and the pads.Measured results show that the tuning range is 44.6%;i.e.,the frequency turning range is from 2.27 to 3.57 GHz.The measured phase noise is-122.22 dBc/Hz at a 1 MHz offset from the carrier.The maximum power consumption of the core part is 6.16 mW at a 1.8 V power supply.展开更多
A novel capacitive microwave MEMS switch with a silicon/metal/dielectric as a membrane is fabricated successfully by bonding and etching-stop process. Its principal, design, and fabricating process are described in de...A novel capacitive microwave MEMS switch with a silicon/metal/dielectric as a membrane is fabricated successfully by bonding and etching-stop process. Its principal, design, and fabricating process are described in detail. A patterned dielectric layer, Ta2O5, with dielectric constant of 24 is reached. Experiment results show this novel structure,where the switch's dielectric layer is not prepared on the transmission line, features very low insertion loss. The insertion loss is 0.06dB at 2GHz and lower than 0.5dB in the wider range from De up to 20GHz,especially when the transmission line metal is only 0. 5μm thick.展开更多
A 13bit,pipelined analog-to-digital converter (ADC) designed to achieve high linearity is described. The high linearity is realized by using the passive capacitor error-averaging technique to calibrate the capacitor...A 13bit,pipelined analog-to-digital converter (ADC) designed to achieve high linearity is described. The high linearity is realized by using the passive capacitor error-averaging technique to calibrate the capacitor mismatch error, a gain-boosting opamp to minimize the finite gain error and gain nonlinearity,a bootstrapping switch to reduce the switch on-resistor nonlinearity, and an anti-disturb design to reduce the noise from the digital supply. This ADC is implemented in 0.18μm CMOS technology and occupies a die area of 3.2mm^2 , including pads. Measured performance includes - 0.18/ 0.15LSB of differential nonlinearity, -0.35/0.5LSB of integral nonlinearity, 75.7dB of signal-to-noise plus distortion ratio (SNDR) and 90. 5 dBc of spurious-free dynamic range (SFDR) for 2.4MHz input at 2.5MS/s. At full speed conversion (5MS/s) and for the same 2.4MHz input, the measured SNDR and SFDR are 73.7dB and 83.9 dBc, respectively. The power dissipation including output pad drivers is 21mW at 2.5MS/s and 34mW at 5MS/s,both at 2.7V supply.展开更多
A high-resolution,200kHz signal bandwidth,third-order single-loop single-bit ε△ modulator used in low-IF GSM receivers is presented. The modulator is implemented with fully differential switched capacitor circuits i...A high-resolution,200kHz signal bandwidth,third-order single-loop single-bit ε△ modulator used in low-IF GSM receivers is presented. The modulator is implemented with fully differential switched capacitor circuits in standard 0. 6μm 2P2M CMOS technology. The modulator uses two balanced reference voltages of ±1V,and is driven by a single 26MHz clock signal. The measurement results show that,with an oversampling ratio of 64, the modulator achieves an 80.6dB dynamic range,a 71.8dB peak SNDR,and a 73.9dB peak SNR in the signal bandwidth of 200kHz. The modulator dissipates 15mW static power from a single 5V supply.展开更多
Power integrity (PI) has become a limiting factor for the chip's overall performance, and how to place in-package decoupling capacitors to improve a chip's PI performance has become a hot issue. In this paper,...Power integrity (PI) has become a limiting factor for the chip's overall performance, and how to place in-package decoupling capacitors to improve a chip's PI performance has become a hot issue. In this paper, we propose an improved trans- mission matrix method (TMM) for fast decoupling capacitance allocation. An irregular grid partition mechanism is proposed, which helps speed up the impedance computation and complies better with the irregular power/ground (P/G) plane or planes with many vias and decoupling capacitors. Furthermore, we also ameliorate the computation procedure of the impedance matrix whenever decoupling capacitors are inserted or removed at specific ports. With the fast computation of impedance change, in-package decoupling capacitor allocation is done with an efficient change based method in the frequency domain. Experimental results show that our approach can gain about 5× speedup compared with a general TMM, and is efficient in restraining the noise on the P/G plane.展开更多
In bandpass sigma delta modulator, resonator is the key block, This papcr proposed a new resonator which can simplify the circuit implementation when designing bandpass modulator with Iowpass prototype. The effect of ...In bandpass sigma delta modulator, resonator is the key block, This papcr proposed a new resonator which can simplify the circuit implementation when designing bandpass modulator with Iowpass prototype. The effect of finite gain, finite bandwidth, and path mismatch on the resonator is analyzed. The function of the proposed resonator and the devired equations about path mismatch have been verified by switched capacitor software SWITCAR.展开更多
The totally coded method (TCM) reveals the same objective law, which governs the gain calculating for signal flow graph as Mason formula does. This algorithm is carried out merely in the domain of code operation. Base...The totally coded method (TCM) reveals the same objective law, which governs the gain calculating for signal flow graph as Mason formula does. This algorithm is carried out merely in the domain of code operation. Based on pure code algorithm, it is more efficient because figure searching is no longer necessary. The code-series ( CS ), which are organized from node association table, have the holoinformation nature, so that both the content and the sign of each gain-term can be determined via the coded method.The principle of this method is obvious and it is suited for computer programming. The capability of the computeraided analysis for Switched Capacitor (SCN) can be enhanced.展开更多
A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper.The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a threephase...A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper.The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a threephase column-parallel circuit based on two floating gate inverters and switched-capacitor network.The conversion rate of traditional single-slope ADC is speeded up by dividing quantization to coarse step and fine step.A storage capacitor is used to store the result of coarse step and locate the section of ramp signal of fine step,which can reduce the clock step from 2 n to 2 (n/2+1).The floating gate inverters are implemented to reduce the power consumption.Its induced nonlinear offset is cancelled by introducing a compensation module to the input of inverter,which can equalize the coupling path in three phases of the proposed circuit.This circuit is designed and simulated for CMOS image sensor with 640×480 pixel array using Chartered 0.18μm process.Simulation results indicate that the resolution can reach 10-bit and the maximum frame rate can reach 200 frames/s with a main clock of 10MHz.The power consumption of this circuit is less than 36.5μW with a 3.3V power supply.The proposed CDS/ADC circuit is suitable for high resolution and high speed image sensors.展开更多
文摘Utilizing the character of chaos, the sensitivity to the initial conditions, the concept and the structure of so-called chaotic transducer based on Tent map is provided in this paper creatively. The possibility of applying the basic theory of symbolic dynamics to the measurement is presented and proved. Then, the theoretical model of chaotic transducer is realized by using the switched capacitor and the basic experimental results are given. The transducer has such characters as high sensitivity, resolution, the simple structure and combining signal amplification with A/D. The new area of the application of chaos is exploited. Meanwhile, it provides a new method of exploring the structure of new type transducer.
文摘A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tuning techniques (4-bit binary switch-capacitor array). The measured phase noise is - 118.17dBc/Hz at a 1MHz offset from a 2. 158GHz carrier. With the presented improved switch,the phase noise varies no more than 3dB at different digital control bits. The phase noise changes only by about 2dB in the tuning range because of the pn-junctions as the varactors. The VCO draws a current of about 2. lmA from a 1.8V power supply and works normally with a 1.5V power supply.
文摘An optimized design of the monolithic switched capacitor DC-DC converter is presented.The general topologic circuit and its basic operating principles are discussed theoretically.Circuit equivalent resistance regulation method is proposed as a feasible method to design the on-chip converters.N-channel MOSFETs,instead of Schottky diodes,are used as the diodes in the converters because of their processing compatibility in monolithic fabrication.One more manufacture step,however,is expected to adjust the threshold voltage of the MOSFETs for improving output characteristics of the converters.As an example,a step-up switched-capacitor converter is fabricated in a 2μm p-well double-poly single-metal CMOS technology with breakdown voltage of 15V.Test results indicate that a single sampling cell with 0.4mm 2 of die size can deliver energy up to 0.63mW at 5V output under the condition of 3V input.Efficiency of the tested sample is 68% at 9.8MHz switching frequency...
文摘A 16 bit stereo audio novel stability fifth-order ∑△ A/D converter that consists of switched capacitor ∑△ modulators, a decimation filter, and a bandgap circuit is proposed. A method for the stabilization of a high order single stage ∑△ modulator is also proposed. A new multistage comb filter is used for the front end decimation filter. The ∑△ A/D converter achieves a peak SNR of 96dB and a dynamic range of 96dB. The ADC was implemented in 0. 5μm 5V CMOS technology. The chip die area occupies only 4. 1mm × 2.4mm and dissipates 90mW.
文摘An integrated 3.3V/1.2V SC DC-DC converter operating under 10MHz with a fixed duty radio of 0.5 is presented.To improve the output current of the converter,CMOS technology is adopted to fabricate the switching devices,and mutually compensatory circuitry technology is also employed to double the output current furthermore.The simulation results using Hspice simulation software,show that the output currents of a single unit circuit and two unit circuits connected in a mutually compensatory manner of the improved converter is about 12.5mA and 26mA,respectively.The power conversion efficiency of the mutually compensatory circuit can amount to 73%,while its output voltage ripple is less than 1.5%.The converter is fabricated in standard Rohm 0.35μm CMOS technology in Tokyo University of Japan.The test result indicates that the output current of 9.8mA can be obtained from a single unit circuit of the improved converter.
文摘A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity resuiting from threshold voltage variation, which has not been accomplished in earlier low-voltage sampling switches. This is achieved by adopting a replica transistor with the same threshold voltage as the sampling transistor. The effectiveness of this technique is demonstrated by a prototype design of a sampling switch in 0. 35μm. The proposed sampling switch achieves a spurious free dynamic range of 111dB for a 0. 2MHz, 1.2Vp-p input signal, sampled at a rate of 2MS/s,about 18dB over the Bootstrapped switch. Also, the on-resistance variation is reduced by 90%. This method is especially useful for low-voltage, high resolution ADCs, which is a hot topic today.
文摘This paper presents a fully integrated 4 8GHz VCO with an invention——symmetrical noise filter technique.This VCO,with relatively low phase noise and large tuning range of 716MHz,is fabricated with the 0 25μm SMIC CMOS process.The oscillator consumes 6mA from 2 5V supply.Another conventional VCO is also designed and simulated without symmetrical noise filter on the same process,which also consumes 6mA current and is with the same tuning.Simulation result describes that the first VCO’ phase noise is 6dBc/Hz better than the latter’s at the same offset frequency from 4 8GHz.Measured phase noise at 1MHz away from the carrier in this 4 8GHz VCO with symmetrical noise filter is -123 66dBc/Hz.This design is suitable for the usage in a phase locked loop and other consumer electronics.It is amenable for future technologies and allows easy porting to different CMOS manufacturing process.
基金The National High Technology Research and Development Program of China (863 Program) ( No. 2006AA12Z302)
文摘For the high resolution required in a digital interface circuit of an accelerometer used in feeble gravity measurement, a switched-capacitor (SC) sigma-delta modulator (SDM) is proposed. Based on the principle and the topology structure of the SDMs, the influence of oversampling ratio, bits of an internal quantizer and the cascaded structure on weak signal detecting precision is analyzed, and an ideal low-distortion SDM with a second-order 1-bit structure satisfying the high- resolution interface circuit of an accelerometer is designed. With the research on non-idealities of each SDM block in the SC circuit implementation and their impacts on power consumption, the realized parameters of low-power SDMs based on different bandwidths are devised and the power consumption of each SDM is estimated. Time-domain behavioral simulation is explored based on Simulink. The results demonstrate that a 21- bit resolution of the designed SDMs can be achieved on the premise of low power, and the parameters for the circuit implementation can be directed to the transistor-level circuit design.
文摘The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to obtain a wide band and a large tuning range,a parallel switched capacitor bank is added in the LC tank.The proposed VCO is implemented in SMIC 0.18-μm RF CMOS technology and the chip area is 750 μm×560 μm,including the test buffer circuit and the pads.Measured results show that the tuning range is 44.6%;i.e.,the frequency turning range is from 2.27 to 3.57 GHz.The measured phase noise is-122.22 dBc/Hz at a 1 MHz offset from the carrier.The maximum power consumption of the core part is 6.16 mW at a 1.8 V power supply.
文摘A novel capacitive microwave MEMS switch with a silicon/metal/dielectric as a membrane is fabricated successfully by bonding and etching-stop process. Its principal, design, and fabricating process are described in detail. A patterned dielectric layer, Ta2O5, with dielectric constant of 24 is reached. Experiment results show this novel structure,where the switch's dielectric layer is not prepared on the transmission line, features very low insertion loss. The insertion loss is 0.06dB at 2GHz and lower than 0.5dB in the wider range from De up to 20GHz,especially when the transmission line metal is only 0. 5μm thick.
文摘A 13bit,pipelined analog-to-digital converter (ADC) designed to achieve high linearity is described. The high linearity is realized by using the passive capacitor error-averaging technique to calibrate the capacitor mismatch error, a gain-boosting opamp to minimize the finite gain error and gain nonlinearity,a bootstrapping switch to reduce the switch on-resistor nonlinearity, and an anti-disturb design to reduce the noise from the digital supply. This ADC is implemented in 0.18μm CMOS technology and occupies a die area of 3.2mm^2 , including pads. Measured performance includes - 0.18/ 0.15LSB of differential nonlinearity, -0.35/0.5LSB of integral nonlinearity, 75.7dB of signal-to-noise plus distortion ratio (SNDR) and 90. 5 dBc of spurious-free dynamic range (SFDR) for 2.4MHz input at 2.5MS/s. At full speed conversion (5MS/s) and for the same 2.4MHz input, the measured SNDR and SFDR are 73.7dB and 83.9 dBc, respectively. The power dissipation including output pad drivers is 21mW at 2.5MS/s and 34mW at 5MS/s,both at 2.7V supply.
文摘A high-resolution,200kHz signal bandwidth,third-order single-loop single-bit ε△ modulator used in low-IF GSM receivers is presented. The modulator is implemented with fully differential switched capacitor circuits in standard 0. 6μm 2P2M CMOS technology. The modulator uses two balanced reference voltages of ±1V,and is driven by a single 26MHz clock signal. The measurement results show that,with an oversampling ratio of 64, the modulator achieves an 80.6dB dynamic range,a 71.8dB peak SNDR,and a 73.9dB peak SNR in the signal bandwidth of 200kHz. The modulator dissipates 15mW static power from a single 5V supply.
基金the Ph.D Programs Foundation of Ministry of Education of China (No. 20060335065)the Natural Science Foundation of Zhejiang Province, China (No. Y106513)
文摘Power integrity (PI) has become a limiting factor for the chip's overall performance, and how to place in-package decoupling capacitors to improve a chip's PI performance has become a hot issue. In this paper, we propose an improved trans- mission matrix method (TMM) for fast decoupling capacitance allocation. An irregular grid partition mechanism is proposed, which helps speed up the impedance computation and complies better with the irregular power/ground (P/G) plane or planes with many vias and decoupling capacitors. Furthermore, we also ameliorate the computation procedure of the impedance matrix whenever decoupling capacitors are inserted or removed at specific ports. With the fast computation of impedance change, in-package decoupling capacitor allocation is done with an efficient change based method in the frequency domain. Experimental results show that our approach can gain about 5× speedup compared with a general TMM, and is efficient in restraining the noise on the P/G plane.
文摘In bandpass sigma delta modulator, resonator is the key block, This papcr proposed a new resonator which can simplify the circuit implementation when designing bandpass modulator with Iowpass prototype. The effect of finite gain, finite bandwidth, and path mismatch on the resonator is analyzed. The function of the proposed resonator and the devired equations about path mismatch have been verified by switched capacitor software SWITCAR.
文摘The totally coded method (TCM) reveals the same objective law, which governs the gain calculating for signal flow graph as Mason formula does. This algorithm is carried out merely in the domain of code operation. Based on pure code algorithm, it is more efficient because figure searching is no longer necessary. The code-series ( CS ), which are organized from node association table, have the holoinformation nature, so that both the content and the sign of each gain-term can be determined via the coded method.The principle of this method is obvious and it is suited for computer programming. The capability of the computeraided analysis for Switched Capacitor (SCN) can be enhanced.
基金Supported by National Natural Science Foundation of China (No.60806010,No.60976030)
文摘A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper.The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a threephase column-parallel circuit based on two floating gate inverters and switched-capacitor network.The conversion rate of traditional single-slope ADC is speeded up by dividing quantization to coarse step and fine step.A storage capacitor is used to store the result of coarse step and locate the section of ramp signal of fine step,which can reduce the clock step from 2 n to 2 (n/2+1).The floating gate inverters are implemented to reduce the power consumption.Its induced nonlinear offset is cancelled by introducing a compensation module to the input of inverter,which can equalize the coupling path in three phases of the proposed circuit.This circuit is designed and simulated for CMOS image sensor with 640×480 pixel array using Chartered 0.18μm process.Simulation results indicate that the resolution can reach 10-bit and the maximum frame rate can reach 200 frames/s with a main clock of 10MHz.The power consumption of this circuit is less than 36.5μW with a 3.3V power supply.The proposed CDS/ADC circuit is suitable for high resolution and high speed image sensors.