A novel TiNi/AlSi composite with high compressive strength and high damping capacity was obtained by infiltrating Al-12%Si alloy into porous TiNi alloy.It had been found that the high compressive strength (440 MPa) of...A novel TiNi/AlSi composite with high compressive strength and high damping capacity was obtained by infiltrating Al-12%Si alloy into porous TiNi alloy.It had been found that the high compressive strength (440 MPa) of TiNi/AlSi composite is due to the increase of effective carrying area after infiltrating Al-12%Si alloy,while the high damping capacity is contributed to TiNi carcass,Al-12%Si filling material and micro- slipping at the interface.展开更多
The thermodynamic properties of LiBC are investigated by using the full-potential linearlzed muffin-tin orbital method (FP-LMTO) within the frame of density functional theory (DFT) and using the quasi-harmonic Deb...The thermodynamic properties of LiBC are investigated by using the full-potential linearlzed muffin-tin orbital method (FP-LMTO) within the frame of density functional theory (DFT) and using the quasi-harmonic Debye model. The dependencies of the normalized lattice parameters a/a0 and c/c0, the ratio (c/a)/2, the normalized primitive volume V/V0 on pressure and temperature are successfully obtained. It is found that the interlayer covalent interactions (Li-B bonds or Li-C bonds) are more sensitive to temperature and pressure than intralayer ones (B-C bonds), as gives rise to the extreme lattice anisotropy in the bulk hop LiBC.展开更多
文摘A novel TiNi/AlSi composite with high compressive strength and high damping capacity was obtained by infiltrating Al-12%Si alloy into porous TiNi alloy.It had been found that the high compressive strength (440 MPa) of TiNi/AlSi composite is due to the increase of effective carrying area after infiltrating Al-12%Si alloy,while the high damping capacity is contributed to TiNi carcass,Al-12%Si filling material and micro- slipping at the interface.
基金The project supported by National Natural Science Foundation of China under Grant No. 10576020
文摘The thermodynamic properties of LiBC are investigated by using the full-potential linearlzed muffin-tin orbital method (FP-LMTO) within the frame of density functional theory (DFT) and using the quasi-harmonic Debye model. The dependencies of the normalized lattice parameters a/a0 and c/c0, the ratio (c/a)/2, the normalized primitive volume V/V0 on pressure and temperature are successfully obtained. It is found that the interlayer covalent interactions (Li-B bonds or Li-C bonds) are more sensitive to temperature and pressure than intralayer ones (B-C bonds), as gives rise to the extreme lattice anisotropy in the bulk hop LiBC.