锂电池的荷电状态(State of Charge,SOC)作为电池管理系统(BMS)的基本参数之一,对其进行准确的估计是BMS可靠性和准确性的基础。为了提升SOC的估算精度,提出了一种考虑老化的锂电池SOC估算方法。选择戴维南二阶模型作为锂电池的等效模型...锂电池的荷电状态(State of Charge,SOC)作为电池管理系统(BMS)的基本参数之一,对其进行准确的估计是BMS可靠性和准确性的基础。为了提升SOC的估算精度,提出了一种考虑老化的锂电池SOC估算方法。选择戴维南二阶模型作为锂电池的等效模型,依据实际数据进行参数辨识并验证。然后,考虑到电池老化对模型参数和实际容量的影响,加入总容量校准和遗忘因子改进扩展卡尔曼滤波(Extended Kalman Filter,EKF)算法,使用改进后的EKF算法精确估计电池的SOC。实验结果表明,在EKF算法基础上加入容量校准和模型老化的遗传因子后SOC的估算精度大大提升。展开更多
文摘锂电池的荷电状态(State of Charge,SOC)作为电池管理系统(BMS)的基本参数之一,对其进行准确的估计是BMS可靠性和准确性的基础。为了提升SOC的估算精度,提出了一种考虑老化的锂电池SOC估算方法。选择戴维南二阶模型作为锂电池的等效模型,依据实际数据进行参数辨识并验证。然后,考虑到电池老化对模型参数和实际容量的影响,加入总容量校准和遗忘因子改进扩展卡尔曼滤波(Extended Kalman Filter,EKF)算法,使用改进后的EKF算法精确估计电池的SOC。实验结果表明,在EKF算法基础上加入容量校准和模型老化的遗传因子后SOC的估算精度大大提升。