According to the characteristics of high-order solitons,compressed picosecond pulses are numerically simulated in the photonic crystal fiber (PCF),by means of split-step Fourier method. The results show that,PCF enabl...According to the characteristics of high-order solitons,compressed picosecond pulses are numerically simulated in the photonic crystal fiber (PCF),by means of split-step Fourier method. The results show that,PCF enables input pulse with lower peak power to form high-order solitons for the purpose of femtosecond pulse-width compression. For example,60- femtosecond pulse width was made for 1-ps initial pulse width only over the distance of 2.2 m.Besides,shorter optimum fiber length for compression and higher compression ratio could be obtained on the premise of pre-chirp technique.展开更多
The development of optical transmission was summarized. The multiplexing system was show in detail. The concepts, characteristic, key technology, expand trend and application prospect of frequency division multiplexin...The development of optical transmission was summarized. The multiplexing system was show in detail. The concepts, characteristic, key technology, expand trend and application prospect of frequency division multiplexing, time division multiplexing, code division multiplexing and wave division multiplexing were illustrated.展开更多
文摘According to the characteristics of high-order solitons,compressed picosecond pulses are numerically simulated in the photonic crystal fiber (PCF),by means of split-step Fourier method. The results show that,PCF enables input pulse with lower peak power to form high-order solitons for the purpose of femtosecond pulse-width compression. For example,60- femtosecond pulse width was made for 1-ps initial pulse width only over the distance of 2.2 m.Besides,shorter optimum fiber length for compression and higher compression ratio could be obtained on the premise of pre-chirp technique.
文摘The development of optical transmission was summarized. The multiplexing system was show in detail. The concepts, characteristic, key technology, expand trend and application prospect of frequency division multiplexing, time division multiplexing, code division multiplexing and wave division multiplexing were illustrated.