In order to solve the problem that the existing data scheduling algorithm cannot make full use of neighbors' bandwidth resources when allocating data request among several senders in the multisender based P2P stre...In order to solve the problem that the existing data scheduling algorithm cannot make full use of neighbors' bandwidth resources when allocating data request among several senders in the multisender based P2P streaming system,a peer priority based scheduling algorithm is proposed.The algorithm calculates neighbors' priority based on peers' historical service evaluation as well as how many wanted data that the neighbor has.The data request allocated to each neighbor is adjusted dynamically according to the priority when scheduling.Peers with high priority are preferred to allocate more data request.Experiment shows the algorithm can make full use of neighbors' bandwidth resources to transmit data to reduce server pressure effectively and improve system scalability.展开更多
An optical fiber control and transmission module is designed and realized based on Virtex-7 field programmable gata array(FPGA), which can be applied in multi-channel broadband digital receivers. The module consists o...An optical fiber control and transmission module is designed and realized based on Virtex-7 field programmable gata array(FPGA), which can be applied in multi-channel broadband digital receivers. The module consists of sampling data transfer submodule and multi-channel synchronous sampling control submodule. The sampling data transmission in 4× fiber link channel is realized with the self-defined transfer protocol. The measured maximum data rate is 4.97 Gbyte/s. By connecting coherent clocks to the transmitter and receiver endpoints and using the self-defined transfer protocol, multi-channel sampling control signals transferred in optical fibers can be received synchronously by each analog-to-digital converter(ADC) with high accuracy and strong anti-interference ability. The module designed in this paper has certain reference value in increasing the transmission bandwidth and the synchronous sampling accuracy of multi-channel broadband digital receivers.展开更多
基金Supported by the National High Technology Research and Development Program of China(No.2009AA01A339,2008AA01A317)the National Natural Science Foundation of China for Distinguished Young Scholars(No.60903218F0208)the Science and Technology Support Plan of China(No.2008BAH28B04)
文摘In order to solve the problem that the existing data scheduling algorithm cannot make full use of neighbors' bandwidth resources when allocating data request among several senders in the multisender based P2P streaming system,a peer priority based scheduling algorithm is proposed.The algorithm calculates neighbors' priority based on peers' historical service evaluation as well as how many wanted data that the neighbor has.The data request allocated to each neighbor is adjusted dynamically according to the priority when scheduling.Peers with high priority are preferred to allocate more data request.Experiment shows the algorithm can make full use of neighbors' bandwidth resources to transmit data to reduce server pressure effectively and improve system scalability.
文摘An optical fiber control and transmission module is designed and realized based on Virtex-7 field programmable gata array(FPGA), which can be applied in multi-channel broadband digital receivers. The module consists of sampling data transfer submodule and multi-channel synchronous sampling control submodule. The sampling data transmission in 4× fiber link channel is realized with the self-defined transfer protocol. The measured maximum data rate is 4.97 Gbyte/s. By connecting coherent clocks to the transmitter and receiver endpoints and using the self-defined transfer protocol, multi-channel sampling control signals transferred in optical fibers can be received synchronously by each analog-to-digital converter(ADC) with high accuracy and strong anti-interference ability. The module designed in this paper has certain reference value in increasing the transmission bandwidth and the synchronous sampling accuracy of multi-channel broadband digital receivers.