Traditional chaotic pulse position modulation(CPPM)system has many drawbacks.It introduces delay into the feedback loop,which will lead to divergence of chaotic map easily.The wrong decision of data will cause error p...Traditional chaotic pulse position modulation(CPPM)system has many drawbacks.It introduces delay into the feedback loop,which will lead to divergence of chaotic map easily.The wrong decision of data will cause error propagation.Mismatch of parameters and synchronization error between the receiver and transmitter will arouse high bit error rate.To solve these problems,a demodulation algorithm of CPPM based on particle filtering is proposed.According to the mathematical model of the system,it tracks the real signal by online separation in demodulation.Simulation results show that the proposed method can track the true signal better than the traditional CPPM scheme.What's more,it has good synchronization robustness,reduced error propagation by wrong decision and low bit error rate.展开更多
Chaotic Colpitts circuits with fundamental frequency f* beyond 1GHz are studied by both circuit simulation and experiment using Philips' broadband transistor with threshold frequency of 25GHz. For the basic config...Chaotic Colpitts circuits with fundamental frequency f* beyond 1GHz are studied by both circuit simulation and experiment using Philips' broadband transistor with threshold frequency of 25GHz. For the basic configuration of Colpitts circuit with f* of about 1.6GHz, broadband continuous power spectra could be obtained from both circuit simulations and experiments. The harmonics of the observed signal from Agilent PSA/ESA spectrum analyzer are as noticeable as far as 12GHz. A modified Colpitts circuit structure employing the parasitic inductance of BJT (Bipolar Junction Transistor) is also proposed and investigated. By circuit simulation, chaotic attractor and broadband continuous power spectra could be obtained from the modified Colpitts circuit with f* of about 3.5GHz. Because the parasitic effects of the prototype board, the experiment result of the modified Colpitts circuit does not agree well with the simulation result. The gap between the simulation and experimental result could be bridged by replacing the lumped circuit elements with distributed ones.展开更多
基金Supported by the National Natural Science Foundation of China(No.41074090)Henan Science and Technology Key Project(No.092102210360)+1 种基金Henan Provincial Department of Education Science ang Technology Key Project(No.13A510330)Doctorate Program of Henan Polytechnic University(No.B2009-27)
文摘Traditional chaotic pulse position modulation(CPPM)system has many drawbacks.It introduces delay into the feedback loop,which will lead to divergence of chaotic map easily.The wrong decision of data will cause error propagation.Mismatch of parameters and synchronization error between the receiver and transmitter will arouse high bit error rate.To solve these problems,a demodulation algorithm of CPPM based on particle filtering is proposed.According to the mathematical model of the system,it tracks the real signal by online separation in demodulation.Simulation results show that the proposed method can track the true signal better than the traditional CPPM scheme.What's more,it has good synchronization robustness,reduced error propagation by wrong decision and low bit error rate.
基金Supported by the National Natural Science Foundation of China (No.60201001).
文摘Chaotic Colpitts circuits with fundamental frequency f* beyond 1GHz are studied by both circuit simulation and experiment using Philips' broadband transistor with threshold frequency of 25GHz. For the basic configuration of Colpitts circuit with f* of about 1.6GHz, broadband continuous power spectra could be obtained from both circuit simulations and experiments. The harmonics of the observed signal from Agilent PSA/ESA spectrum analyzer are as noticeable as far as 12GHz. A modified Colpitts circuit structure employing the parasitic inductance of BJT (Bipolar Junction Transistor) is also proposed and investigated. By circuit simulation, chaotic attractor and broadband continuous power spectra could be obtained from the modified Colpitts circuit with f* of about 3.5GHz. Because the parasitic effects of the prototype board, the experiment result of the modified Colpitts circuit does not agree well with the simulation result. The gap between the simulation and experimental result could be bridged by replacing the lumped circuit elements with distributed ones.