Sum frequency generation vibrational spectroscopy (SFG-VS) is a robust technique for inter- facial investigation at molecular level. The performance of SFG-VS mostly depends on the spectral resolution of the SFG sys...Sum frequency generation vibrational spectroscopy (SFG-VS) is a robust technique for inter- facial investigation at molecular level. The performance of SFG-VS mostly depends on the spectral resolution of the SFG system. In this research, a simplified function was deduced to calculate the spectral resolution of picosecond SFG system and the lineshape of SFG spectra based on the Guassian shaped functions of IR beam and visible beam. The function indicates that the lineshpe of SFG spectra from nonresonant samples can be calculated by the Guassian widths of both IR beam and visible beam. And the Voigt lineshape of SFG spectra from vibrational resonant samples can be calculated by the Homogeneous broadening (Lorentzian width) and Inhomogeneous broadening (Guassian width) of vibrational modes, as well as the Guassian widths of both IR beam and visible beam. Such functions were also applied to verify the spectral resolution of the polarization-resolved and frequency-resolved picosecond SFG-VS system which was developed by our group recently. It is shown that the linewidths of IR beams that generated from current laser system are about 1.5 cm-1. The calculated spectral resolution of current picosecond IR scanning SFG-VS system is about 4.6 cm-1, which is consist with he spctral resolution shown in the spectra of cholesterol monolayer (3.5-5 cm-1).展开更多
Existing solutions against wiretapping attacks for network coding either bring significant bandwidth overhead or incur a high computational complexity.In order to reduce the security overhead of the existing solutions...Existing solutions against wiretapping attacks for network coding either bring significant bandwidth overhead or incur a high computational complexity.In order to reduce the security overhead of the existing solutions for securing network coding,a novel securing network coding paradigm is presented relying on two coding models:intra-generation coding and inter-generation coding.The basic idea to secure network coding using intra-generation coding is to limit the encryption operations for each generation,and then subject the scrambled and the remaining original source vectors to a linear transformation.This method is then generalized seamlessly using inter-generation coding by further exploiting the algebraic structure of network coding.We show that the proposed schemes have properties of low-complexity security,little bandwidth consumption,and high efficiency in integrating with the existing security techniques effectively.展开更多
This paper presents a detail analysis of two bandwidth packing algorithms, used for processing connection requests in the centralized wireless network. Each call comes with a specific bandwidth request. A request can ...This paper presents a detail analysis of two bandwidth packing algorithms, used for processing connection requests in the centralized wireless network. Each call comes with a specific bandwidth request. A request can be satisfied only if there is sufficient bandwidth available during resource scheduling and allocation. Unsatisfied requests were held in a queue. The metric of bandwidth utilization ratio was used to quantify the performance of our algorithms. By theoretical analysis, our algorithms can improve the average bandwidth usage ratio significantly, about 8%~10% without adding much computation complexity. Moreover, our algorithms outperform next fit with fragmentation (NFF) algorithm when the bandwidth resource is scarce. In this paper, the contributions follows: Introducing bandwidth packing problem into wireless network; Proposing two new bandwidth packing algorithms for wireless network where the complicate scheduling algorithms are prohibited; Studying the average performance of our algorithms mathematically, which agree well with the simulation results.展开更多
In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retra...In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).展开更多
Based on the density functional theory (DFT), the electronic structures and optical properties of Mg2Pb are calculated by using the local density approximation (LDA) and plane wave pseudo-potential method. The cal...Based on the density functional theory (DFT), the electronic structures and optical properties of Mg2Pb are calculated by using the local density approximation (LDA) and plane wave pseudo-potential method. The calculation results show that the indirect band gap width of Mg2Pb is 0.02796 eV. The optical properties of MgzPb have isotropic characteristics, the static dielectric function of Mg2Pb is ε1(0) = 10.33 and the refractive index is n0 = 3.5075. The maximum absorption coefficient is 4.8060×10^5 cm-1. The absorption in the photon energy range of 25-40 eV approaches to zero, shows the optical colorless and transparent behaviors.展开更多
In order to measure the flow velocity of carbon particle suspension perpendicular to the receiving axis of ultrasound transducer, the standard deviation of photoacoustic Doppler frequency spectrum is used to estimate ...In order to measure the flow velocity of carbon particle suspension perpendicular to the receiving axis of ultrasound transducer, the standard deviation of photoacoustic Doppler frequency spectrum is used to estimate the bandwidth broadening, and the spectrum standard deviation is calculated by an auto-correlation method. A 532 nm pulsed laser with the repetition rate of 20 Hz is used as a pumping source to generate photoacoustic signal. The photoacoustic signals are detected using a focused PZT ultrasound transducer with the central frequency of 10 MHz. The suspension of carbon particles is driven by a syringe pump. The complex photoacoustic signal is calculated by Hilbert transformation from time domain signal before auto-correlation. The standard deviation of the Doppler bandwidth broadening is calculated by averaging the auto-correlation results of several individual A scans. The feasibility of the proposed method is demonstrated by measuring the spectrum standard deviation of the transversal carbon particle flow from 5.0 mm/s to 8.4 mrn/s. The experimental results show that the auto-correlation result is approximately linearly distributed within the measuring range.展开更多
文摘Sum frequency generation vibrational spectroscopy (SFG-VS) is a robust technique for inter- facial investigation at molecular level. The performance of SFG-VS mostly depends on the spectral resolution of the SFG system. In this research, a simplified function was deduced to calculate the spectral resolution of picosecond SFG system and the lineshape of SFG spectra based on the Guassian shaped functions of IR beam and visible beam. The function indicates that the lineshpe of SFG spectra from nonresonant samples can be calculated by the Guassian widths of both IR beam and visible beam. And the Voigt lineshape of SFG spectra from vibrational resonant samples can be calculated by the Homogeneous broadening (Lorentzian width) and Inhomogeneous broadening (Guassian width) of vibrational modes, as well as the Guassian widths of both IR beam and visible beam. Such functions were also applied to verify the spectral resolution of the polarization-resolved and frequency-resolved picosecond SFG-VS system which was developed by our group recently. It is shown that the linewidths of IR beams that generated from current laser system are about 1.5 cm-1. The calculated spectral resolution of current picosecond IR scanning SFG-VS system is about 4.6 cm-1, which is consist with he spctral resolution shown in the spectra of cholesterol monolayer (3.5-5 cm-1).
基金supported by the National Natural Science Foundation of China(Grant No.11371290,No.61271174,No. 61301178)the Science and Technology Innovation Foundation of Xi'an(Grant No. CXY1352WL28)
文摘Existing solutions against wiretapping attacks for network coding either bring significant bandwidth overhead or incur a high computational complexity.In order to reduce the security overhead of the existing solutions for securing network coding,a novel securing network coding paradigm is presented relying on two coding models:intra-generation coding and inter-generation coding.The basic idea to secure network coding using intra-generation coding is to limit the encryption operations for each generation,and then subject the scrambled and the remaining original source vectors to a linear transformation.This method is then generalized seamlessly using inter-generation coding by further exploiting the algebraic structure of network coding.We show that the proposed schemes have properties of low-complexity security,little bandwidth consumption,and high efficiency in integrating with the existing security techniques effectively.
文摘This paper presents a detail analysis of two bandwidth packing algorithms, used for processing connection requests in the centralized wireless network. Each call comes with a specific bandwidth request. A request can be satisfied only if there is sufficient bandwidth available during resource scheduling and allocation. Unsatisfied requests were held in a queue. The metric of bandwidth utilization ratio was used to quantify the performance of our algorithms. By theoretical analysis, our algorithms can improve the average bandwidth usage ratio significantly, about 8%~10% without adding much computation complexity. Moreover, our algorithms outperform next fit with fragmentation (NFF) algorithm when the bandwidth resource is scarce. In this paper, the contributions follows: Introducing bandwidth packing problem into wireless network; Proposing two new bandwidth packing algorithms for wireless network where the complicate scheduling algorithms are prohibited; Studying the average performance of our algorithms mathematically, which agree well with the simulation results.
基金supported in part by the National Natural Science Foundation of China under Grant No. 61032004the National High Technical Research and Development Program of China (863 Program) under Grants No. 2012AA121605,No. 2012AA01A503,No.2012AA01A510
文摘In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).
基金supported by the National Natural Science Foundation of China(Grant No.51201079)the Scientific Research Foundation for Introduced Talents of KMUST(Grant No.KKSY201251033)the Scientific Research Fund of Department of Education of Yunnan Province(Grant No.2012Z099)
文摘Based on the density functional theory (DFT), the electronic structures and optical properties of Mg2Pb are calculated by using the local density approximation (LDA) and plane wave pseudo-potential method. The calculation results show that the indirect band gap width of Mg2Pb is 0.02796 eV. The optical properties of MgzPb have isotropic characteristics, the static dielectric function of Mg2Pb is ε1(0) = 10.33 and the refractive index is n0 = 3.5075. The maximum absorption coefficient is 4.8060×10^5 cm-1. The absorption in the photon energy range of 25-40 eV approaches to zero, shows the optical colorless and transparent behaviors.
基金supported by the Joint Funds of the National Natural Science Foundation of China(No.U1204612)the Natural Science Foundation of He’nan Educational Committee(No.13A416180)
文摘In order to measure the flow velocity of carbon particle suspension perpendicular to the receiving axis of ultrasound transducer, the standard deviation of photoacoustic Doppler frequency spectrum is used to estimate the bandwidth broadening, and the spectrum standard deviation is calculated by an auto-correlation method. A 532 nm pulsed laser with the repetition rate of 20 Hz is used as a pumping source to generate photoacoustic signal. The photoacoustic signals are detected using a focused PZT ultrasound transducer with the central frequency of 10 MHz. The suspension of carbon particles is driven by a syringe pump. The complex photoacoustic signal is calculated by Hilbert transformation from time domain signal before auto-correlation. The standard deviation of the Doppler bandwidth broadening is calculated by averaging the auto-correlation results of several individual A scans. The feasibility of the proposed method is demonstrated by measuring the spectrum standard deviation of the transversal carbon particle flow from 5.0 mm/s to 8.4 mrn/s. The experimental results show that the auto-correlation result is approximately linearly distributed within the measuring range.