The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
The formation of strath and strath terrace is closely related to tectonic uplift in the drainage basin. Based on the investigation of straths at Yandantu and Changcaogou on the eastern segment of the northern margin f...The formation of strath and strath terrace is closely related to tectonic uplift in the drainage basin. Based on the investigation of straths at Yandantu and Changcaogou on the eastern segment of the northern margin fault of Altun, and in combination with the paleoclimatic data, the tectonic uplift since late Epipleistocene as revealed by stream terraces at the two places is discussed. At Yandantu, three levels of stream terraces(T 1, T 2 and T 3)have developed since 16ka BP, where T 1, T 3 and T 2 are fill terraces and the buried major straths are exposed. The ages of three treads are dated to be about 16.1ka BP, 12.8ka BP and 6.2ka BP, respectively. The three terraces reflect three tectonic uplift events, while the ages of the treads represent the occurrence time of these events. The stream is still beveling the bedrock and widening the channel at present, and the modern strath is being generated. The uplift rate is 4.8~4.5mm/a since 16.1 ka BP in this area. From 12.8ka B.P to 6.2ka BP, The uplift rate was 6.4mm/a. The uplift rate is 3.1mm/a since 6.2ka BP. At Changcaogou, four levels of stream terraces(T 1, T 2, T 3 and T 1′)have developed since 7ka BP. All of them are fill terraces. There are buried straths under the deposits. The buried major strath is exposed on T 3 and T 2 and the minor strath on T 1′and T 1. The ages of treads of the three terraces (T 3, T 2 and T 1′) are 7 ka BP, 3 ka BP and 2.5 ka BP, respectively. The four terraces reflect two uplift events induced by tectonic activities. One occurred in about 7 ka BP, and the other in 3ka BP. The uplift rate is 5.9mm/a since 7.0 ka BP at Changcaogou. From 7ka BP to 3ka BP, the uplift rate was 7.0mm/a, and since 3ka BP till now, the uplift rate is 4.7 mm/a.展开更多
Objective: To investigate the feasibility of posterior fixation with 3.5-mm pedicle screws in the atlantoaxial vertebrae of children. Methods: In this study, atlantoaxial vertebrae specimens were obtained from 10 ca...Objective: To investigate the feasibility of posterior fixation with 3.5-mm pedicle screws in the atlantoaxial vertebrae of children. Methods: In this study, atlantoaxial vertebrae specimens were obtained from 10 cadavers of children aged 6-8 years. We measured the height and width of the C1 pedicle and the midportion of C1 lateral mass; the width of C1 posterior arch under the vertebral artery groove and the height of the external and internal one-third of this part; the external, internal height and the superior, middle, inferior width of the C2 pedicle (transverse foramen). Furthermore, computed tomography (CT) axial scan was performed on 20 agematched volunteers to obtain relative data of their atlantoaxial vertebrae. We measured the length and width of the C1 and C2 pedicles in the atlantoaxial cross-sectional plane. On CT workstation, we also measured the angles between the longitudinal axes of the atlantoaxial pedicles and the midsagittal plane. Results: For the cadaveric specimen group, the height and width of the C1 pedicle were (5.26±0.44) mm and (6.26±0.75) mm respectively. The height of the medial one-third of the Ct posterior arch under the vertebral artery groove was (4.07±0.24) mm. The external, internal height and superior, middle, inferior width of the C2 pedicle was (6.86±0.48) mm, (6.67±0.49) mm, (6.63 ±0.61) mm, (5.41±0.39) mm and (3.71±0.30) mm, respectively. For the volunteer group measured by CT scan, the height and width of the C1 pedicle were (5.47 ±0.34) mm and (6.63±0.54) mm respectively, while (6.59±0.51) mm and (5.13 ±0.42) mm of the C2 pedicle. The angles between the atlas, axis pedicles and the midsagittal plane were (9.60±1.32)° and (27.80±2.22)° respectively. Conclusion: It is feasible to place a 3.5-mm pedicle screw in the C1 and C2 pedicles of children aged 6-8 years old.展开更多
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
文摘The formation of strath and strath terrace is closely related to tectonic uplift in the drainage basin. Based on the investigation of straths at Yandantu and Changcaogou on the eastern segment of the northern margin fault of Altun, and in combination with the paleoclimatic data, the tectonic uplift since late Epipleistocene as revealed by stream terraces at the two places is discussed. At Yandantu, three levels of stream terraces(T 1, T 2 and T 3)have developed since 16ka BP, where T 1, T 3 and T 2 are fill terraces and the buried major straths are exposed. The ages of three treads are dated to be about 16.1ka BP, 12.8ka BP and 6.2ka BP, respectively. The three terraces reflect three tectonic uplift events, while the ages of the treads represent the occurrence time of these events. The stream is still beveling the bedrock and widening the channel at present, and the modern strath is being generated. The uplift rate is 4.8~4.5mm/a since 16.1 ka BP in this area. From 12.8ka B.P to 6.2ka BP, The uplift rate was 6.4mm/a. The uplift rate is 3.1mm/a since 6.2ka BP. At Changcaogou, four levels of stream terraces(T 1, T 2, T 3 and T 1′)have developed since 7ka BP. All of them are fill terraces. There are buried straths under the deposits. The buried major strath is exposed on T 3 and T 2 and the minor strath on T 1′and T 1. The ages of treads of the three terraces (T 3, T 2 and T 1′) are 7 ka BP, 3 ka BP and 2.5 ka BP, respectively. The four terraces reflect two uplift events induced by tectonic activities. One occurred in about 7 ka BP, and the other in 3ka BP. The uplift rate is 5.9mm/a since 7.0 ka BP at Changcaogou. From 7ka BP to 3ka BP, the uplift rate was 7.0mm/a, and since 3ka BP till now, the uplift rate is 4.7 mm/a.
文摘Objective: To investigate the feasibility of posterior fixation with 3.5-mm pedicle screws in the atlantoaxial vertebrae of children. Methods: In this study, atlantoaxial vertebrae specimens were obtained from 10 cadavers of children aged 6-8 years. We measured the height and width of the C1 pedicle and the midportion of C1 lateral mass; the width of C1 posterior arch under the vertebral artery groove and the height of the external and internal one-third of this part; the external, internal height and the superior, middle, inferior width of the C2 pedicle (transverse foramen). Furthermore, computed tomography (CT) axial scan was performed on 20 agematched volunteers to obtain relative data of their atlantoaxial vertebrae. We measured the length and width of the C1 and C2 pedicles in the atlantoaxial cross-sectional plane. On CT workstation, we also measured the angles between the longitudinal axes of the atlantoaxial pedicles and the midsagittal plane. Results: For the cadaveric specimen group, the height and width of the C1 pedicle were (5.26±0.44) mm and (6.26±0.75) mm respectively. The height of the medial one-third of the Ct posterior arch under the vertebral artery groove was (4.07±0.24) mm. The external, internal height and superior, middle, inferior width of the C2 pedicle was (6.86±0.48) mm, (6.67±0.49) mm, (6.63 ±0.61) mm, (5.41±0.39) mm and (3.71±0.30) mm, respectively. For the volunteer group measured by CT scan, the height and width of the C1 pedicle were (5.47 ±0.34) mm and (6.63±0.54) mm respectively, while (6.59±0.51) mm and (5.13 ±0.42) mm of the C2 pedicle. The angles between the atlas, axis pedicles and the midsagittal plane were (9.60±1.32)° and (27.80±2.22)° respectively. Conclusion: It is feasible to place a 3.5-mm pedicle screw in the C1 and C2 pedicles of children aged 6-8 years old.