Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experiment...Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology.展开更多
The experiment results of ultrawide band electromagnetic radiation with DC biased GaAs photoconductive semiconductor switch combining double ridge horn antenna triggered by high repeat frequency femto-second laser pul...The experiment results of ultrawide band electromagnetic radiation with DC biased GaAs photoconductive semiconductor switch combining double ridge horn antenna triggered by high repeat frequency femto-second laser pulse are reported.The GaAs switches are insulated by solid multi-layer transparent dielectrics and the distance of two electrodes is 3mm.The electrode material of the switch is ohmic contact through alloy technics with definite proportion of Au/Ge/Ni.This switch and double ridge horn antenna are integrated and the receive antenna is connected with the test instrument.From receiving antenna,ultra fast electrical pulse of 200ps rise time and 500ps pulse width is obtained,the repetition rate of the pulse is about 82MHz and the frequency spectrum is in the range of 4.7MHz~14GHz.The radiation characteristic of the ultrafast electrical pulse is analyzed.展开更多
In order to improve the bandwidth of the conventional sub-harmonic mixer, a broad-band, high intermediate frequency(IF) sub-harmonic mixer for W-band applications is proposed. Replacing the open and short stubs that...In order to improve the bandwidth of the conventional sub-harmonic mixer, a broad-band, high intermediate frequency(IF) sub-harmonic mixer for W-band applications is proposed. Replacing the open and short stubs that are used in the convertional sub-harmonic mixer with a broad-band band-pass filter and a low-pass filter, respectively, a wide operating frequency band is achieved. Furthermore, without the use of the edge-coupled band-pass filter at radio frequency(RF) port, the proposed structure can be realized by common hybrid microwave integrated circuit technology at W- band. The measured results show that the proposed subharmonic mixer can operate from 80 to 107.5 GHz for RF frequency and support up to 18 GHz for the IF bandwidth. Also, the measured results show that the single-sideband conversion loss is less than 13. 7 dB over the available RF frequency band, while the minimum conversion loss is about 9 dB at an RF of 92. 5 GHz and an 1F of 3 GHz. Thus, a large operating bandwidth performance at W-band can be achieved by the orooosed mixer.展开更多
A broadband microstrip patch antenna was analyzed and designed.Full wave analysis method(FWAM) was employed to show that a stacked microstrip dual patch antenna(SMDPA) might have a much wider bandwidth than that of ...A broadband microstrip patch antenna was analyzed and designed.Full wave analysis method(FWAM) was employed to show that a stacked microstrip dual patch antenna(SMDPA) might have a much wider bandwidth than that of the ordinanry uni patch one.By means of discrete complex image theory(DCIT),the Sommerfeld integrals (SI) involved were accurately calculated at a speed several hundred times faster than numerical integration method(NIM).The feeding structure of the SMDPA was then improved and the bandwidth was extended to about 22% or more for voltage standing wave ratio (VSWR)s≤2 Finally,a matching network was constructed to obtain a bandwidth of about 25% for s≤1.5.展开更多
A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two ...A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two bandnotched characteristics in WiMAX3.5 GHz and WLAN 5.5 GHz.The size of antenna is 24 mm × 36 mm × 1.6 mm.The simulation results show that waveband range of the antenna is 2.7-10.6 GHz for S11 <-10 dB and the band-notched wavebands are 3.2-3.8 GHz and 5.1-6 GHz.So it has miniaturization,ultra-band and band-notched characteristics.Meanwhile,the radition pattern,directivety and gain are perfect,which meets the practical need.展开更多
Using an in-house MMIC and an off-chip,high-quality varactor, a novel wide band VCO covered Ku band is introduced. In contrast to HMIC technology, this method reduces the complexity of microchip assembly. More importa...Using an in-house MMIC and an off-chip,high-quality varactor, a novel wide band VCO covered Ku band is introduced. In contrast to HMIC technology, this method reduces the complexity of microchip assembly. More importantly,it overcomes the constraint that the standard commercial GaAs pHEMT MMIC process is usually not compatible with highquality varactors for VCO,and it significantly improves the phase noise and frequency tuning linearity performances compared to either MMIC or HMIC implementation. It is a novel and high-quality method to develop microwave and millimeter wave VCO.展开更多
In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the ...In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.展开更多
S-band gain flattened distributed fiber Raman amplifier with a bandwidth from 1 488 nm to 1 541 nm (53 nm in width) ,an averaged gain of 10 dB and a gain ripple of ±0.6 dB is obtained successfully, in which a s...S-band gain flattened distributed fiber Raman amplifier with a bandwidth from 1 488 nm to 1 541 nm (53 nm in width) ,an averaged gain of 10 dB and a gain ripple of ±0.6 dB is obtained successfully, in which a single-wavelength high power fiber Raman laser with wavelength of 1 427.2 nm is used as the pump and the chirped fiber Bragg grating is used as the gain flattening filter. Besides,filter wavelength division multiplexer(FWDM) is used as the multi-signal multiplexer and 1 427 nm/1 505 nm coarse wavelength division multiplexer(OWDM) is used as the pump-signal coupler. The gain media are G652 fiber of 50 km in length and dispersion compensation fiber(DOF) of 5 km in length. Moreover, the location arrangements of different type of fibers and the effect caused by gain flattening filter as well as their solutions are discussed in detail. It is very significant to extend the range of optical fiber communication band and increase the capacity of fiber communication especially for ultra-long haul and ultra-high capacity communication system.展开更多
A 33×33 thermo-optically tunable arrayed-waveguide-grating (AWG) has been fabricated by using the poly (2,3,4,5,6-pentafluorostyrene-co-glycidylmethacrylate) (PFS-co-GMA).The technological process of the fabricat...A 33×33 thermo-optically tunable arrayed-waveguide-grating (AWG) has been fabricated by using the poly (2,3,4,5,6-pentafluorostyrene-co-glycidylmethacrylate) (PFS-co-GMA).The technological process of the fabrication of the device is described,and the measured results are presented.The measured spacing of the wavelength channel is about 0.81 nm,the 3-dB bandwidth is about 0.35 nm,the crosstalk is about -20 dB,and the insertion loss is between 10.4 dB for the centre port and 11.9 dB for the edge port.The measured thermo-optical tunable shift is about -0.12 nm/K.The measured center wavelength is 1 545.21-1 551.81 nm in the temperature range from 10℃ to 65℃,and the tuning range is 6.6 nm.展开更多
Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wid...Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wideband CR system where the Secondary User (SU) mini- raises its interference to the PU by jointly al- locating the optimal sensing threshold and sub- carrier power. A multi-parameter optimization problem is formulated to obtain the joint opt- imal allocation by alternating direction opti- mization, which minimises the total interfer- ence to the PU over all of the subcarriers sub- ject to the constraints on the throughput, Bit Error Rate (BER) and maximal total power of the SU, the subcarrier rate and interference power of the PU, and the false alarm and mis- detection probabilities of each subcarrier. The simulation results show that the proposed joint allocation algorithm can achieve the desired mitigation on the interference to the PU at the different subcarrier gains.展开更多
A new ultra-wide-band(UWB) horn antenna based on the nonradiative dielectric waveguide (NRD-guide) was proposed to solve the problem of UWB antennas, TEM horns for example, generally suffer from large side leakage. Th...A new ultra-wide-band(UWB) horn antenna based on the nonradiative dielectric waveguide (NRD-guide) was proposed to solve the problem of UWB antennas, TEM horns for example, generally suffer from large side leakage. The rule of the theoretical selection of its parameters, if NRD-guide is used as the UWB antennas, is studied firstly, then the radiation characteristics for an open-ended NRD-guide are calculated by FDTD (finite-difference time-domain) method.展开更多
In order to overcome the narrow-bandwidth of the patch antenna, one kind of configuration which can widen the bandwidth significantly is discussed in this letter. Analyzed by the equivalent-circuits method and simulat...In order to overcome the narrow-bandwidth of the patch antenna, one kind of configuration which can widen the bandwidth significantly is discussed in this letter. Analyzed by the equivalent-circuits method and simulated by HFSS, a rule derived from simulated results that can aid to design the microstrip antennas is found. Finally, the structure parameters are optimized out, Which reaches 44.67% impedance bandwidth. Furthermore, this kind of configuration can also be applied to the multi-laver patch antenna.展开更多
Broadband ultrasound signals will produce distortion in viscoacoustic medium, which may influence the accuracy of time-of-flight (TOF) measurement. Under the condition of single-frequency acoustic source, the wave pro...Broadband ultrasound signals will produce distortion in viscoacoustic medium, which may influence the accuracy of time-of-flight (TOF) measurement. Under the condition of single-frequency acoustic source, the wave propagation process in viscoacoustic medium was analyzed and an approximate solution of the wave propagation was given. Instances of broadband ultrasound were analyzed and simulated based on the single-frequency results. A single-frequency matching pursuits (SFMP) algorithm was then introduced to solve the waveform distortion problem. Time-frequency decomposition was applied to extracting the single-frequency compositions from broadband ultrasound signals, and then these compositions were sent to the matching pursuits (MP) algorithm for calculating the TOF parameters. Compared with the broadband signals, the shapes of extracted single-frequency signals change more slightly as distance and attenuation coefficient increase. The residuals of SFMP were far less than those of MP algorithm. Experimental results show that the SFMP algorithm is able to eliminate waveform distortion of broadband ultrasound in viscoacoustic medium, which helps improve the accuracy of TOF measurement.展开更多
In this paper, a novel and simple CPW-fed planar monopole antenna is presented for UWB application. The antenna is fabricated on inexpensive FR4 substrate and fed by 50Ω CPW on the same layer, Measured data show that...In this paper, a novel and simple CPW-fed planar monopole antenna is presented for UWB application. The antenna is fabricated on inexpensive FR4 substrate and fed by 50Ω CPW on the same layer, Measured data show that the antenna provides an impedance bandwidth of about 8GHz for the return loss less than 10dB. It is also observed that the radiation pattems are nearly omni-directional over the entire frequency range. Details of the proposed antenna are presented, and simulated results are presented and discussed.展开更多
基金Supported by National Key R&D Program of China(2021YFA0715500)National Natural Science Foundation of China(NSFC)(12227901)+1 种基金Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB0580000)Chinese Academy of Sciences President's In-ternational Fellowship Initiative(2021PT0007).
文摘Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology.
文摘The experiment results of ultrawide band electromagnetic radiation with DC biased GaAs photoconductive semiconductor switch combining double ridge horn antenna triggered by high repeat frequency femto-second laser pulse are reported.The GaAs switches are insulated by solid multi-layer transparent dielectrics and the distance of two electrodes is 3mm.The electrode material of the switch is ohmic contact through alloy technics with definite proportion of Au/Ge/Ni.This switch and double ridge horn antenna are integrated and the receive antenna is connected with the test instrument.From receiving antenna,ultra fast electrical pulse of 200ps rise time and 500ps pulse width is obtained,the repetition rate of the pulse is about 82MHz and the frequency spectrum is in the range of 4.7MHz~14GHz.The radiation characteristic of the ultrafast electrical pulse is analyzed.
基金Research Foundation of China ( No.9140A01020209JW0601)
文摘In order to improve the bandwidth of the conventional sub-harmonic mixer, a broad-band, high intermediate frequency(IF) sub-harmonic mixer for W-band applications is proposed. Replacing the open and short stubs that are used in the convertional sub-harmonic mixer with a broad-band band-pass filter and a low-pass filter, respectively, a wide operating frequency band is achieved. Furthermore, without the use of the edge-coupled band-pass filter at radio frequency(RF) port, the proposed structure can be realized by common hybrid microwave integrated circuit technology at W- band. The measured results show that the proposed subharmonic mixer can operate from 80 to 107.5 GHz for RF frequency and support up to 18 GHz for the IF bandwidth. Also, the measured results show that the single-sideband conversion loss is less than 13. 7 dB over the available RF frequency band, while the minimum conversion loss is about 9 dB at an RF of 92. 5 GHz and an 1F of 3 GHz. Thus, a large operating bandwidth performance at W-band can be achieved by the orooosed mixer.
文摘A broadband microstrip patch antenna was analyzed and designed.Full wave analysis method(FWAM) was employed to show that a stacked microstrip dual patch antenna(SMDPA) might have a much wider bandwidth than that of the ordinanry uni patch one.By means of discrete complex image theory(DCIT),the Sommerfeld integrals (SI) involved were accurately calculated at a speed several hundred times faster than numerical integration method(NIM).The feeding structure of the SMDPA was then improved and the bandwidth was extended to about 22% or more for voltage standing wave ratio (VSWR)s≤2 Finally,a matching network was constructed to obtain a bandwidth of about 25% for s≤1.5.
文摘A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two bandnotched characteristics in WiMAX3.5 GHz and WLAN 5.5 GHz.The size of antenna is 24 mm × 36 mm × 1.6 mm.The simulation results show that waveband range of the antenna is 2.7-10.6 GHz for S11 <-10 dB and the band-notched wavebands are 3.2-3.8 GHz and 5.1-6 GHz.So it has miniaturization,ultra-band and band-notched characteristics.Meanwhile,the radition pattern,directivety and gain are perfect,which meets the practical need.
文摘Using an in-house MMIC and an off-chip,high-quality varactor, a novel wide band VCO covered Ku band is introduced. In contrast to HMIC technology, this method reduces the complexity of microchip assembly. More importantly,it overcomes the constraint that the standard commercial GaAs pHEMT MMIC process is usually not compatible with highquality varactors for VCO,and it significantly improves the phase noise and frequency tuning linearity performances compared to either MMIC or HMIC implementation. It is a novel and high-quality method to develop microwave and millimeter wave VCO.
基金The 11th Postgraduate Technology Innovation Project of North University of China(No.20141147)
文摘In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.
基金This work was supported bythe Great Scientific Research Projectof Zhejiang Province ,P.R.China (No.021101558)the Min-istry of Science and Technology ,Korea as a part of project fundsof the Korea-China Optical Technology Research Center .
文摘S-band gain flattened distributed fiber Raman amplifier with a bandwidth from 1 488 nm to 1 541 nm (53 nm in width) ,an averaged gain of 10 dB and a gain ripple of ±0.6 dB is obtained successfully, in which a single-wavelength high power fiber Raman laser with wavelength of 1 427.2 nm is used as the pump and the chirped fiber Bragg grating is used as the gain flattening filter. Besides,filter wavelength division multiplexer(FWDM) is used as the multi-signal multiplexer and 1 427 nm/1 505 nm coarse wavelength division multiplexer(OWDM) is used as the pump-signal coupler. The gain media are G652 fiber of 50 km in length and dispersion compensation fiber(DOF) of 5 km in length. Moreover, the location arrangements of different type of fibers and the effect caused by gain flattening filter as well as their solutions are discussed in detail. It is very significant to extend the range of optical fiber communication band and increase the capacity of fiber communication especially for ultra-long haul and ultra-high capacity communication system.
文摘A 33×33 thermo-optically tunable arrayed-waveguide-grating (AWG) has been fabricated by using the poly (2,3,4,5,6-pentafluorostyrene-co-glycidylmethacrylate) (PFS-co-GMA).The technological process of the fabrication of the device is described,and the measured results are presented.The measured spacing of the wavelength channel is about 0.81 nm,the 3-dB bandwidth is about 0.35 nm,the crosstalk is about -20 dB,and the insertion loss is between 10.4 dB for the centre port and 11.9 dB for the edge port.The measured thermo-optical tunable shift is about -0.12 nm/K.The measured center wavelength is 1 545.21-1 551.81 nm in the temperature range from 10℃ to 65℃,and the tuning range is 6.6 nm.
基金supported by the National Natural Science Foundation of China under Grant No. 61201143the Scientific Research Foundation for Introduced Talent of Nanjing University of Aeronautics and Astronautics under Grant No. 56YAH13029
文摘Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wideband CR system where the Secondary User (SU) mini- raises its interference to the PU by jointly al- locating the optimal sensing threshold and sub- carrier power. A multi-parameter optimization problem is formulated to obtain the joint opt- imal allocation by alternating direction opti- mization, which minimises the total interfer- ence to the PU over all of the subcarriers sub- ject to the constraints on the throughput, Bit Error Rate (BER) and maximal total power of the SU, the subcarrier rate and interference power of the PU, and the false alarm and mis- detection probabilities of each subcarrier. The simulation results show that the proposed joint allocation algorithm can achieve the desired mitigation on the interference to the PU at the different subcarrier gains.
基金National Key Fundamental Research & Development Programs (973) of China (2001CB309405)
文摘A new ultra-wide-band(UWB) horn antenna based on the nonradiative dielectric waveguide (NRD-guide) was proposed to solve the problem of UWB antennas, TEM horns for example, generally suffer from large side leakage. The rule of the theoretical selection of its parameters, if NRD-guide is used as the UWB antennas, is studied firstly, then the radiation characteristics for an open-ended NRD-guide are calculated by FDTD (finite-difference time-domain) method.
文摘In order to overcome the narrow-bandwidth of the patch antenna, one kind of configuration which can widen the bandwidth significantly is discussed in this letter. Analyzed by the equivalent-circuits method and simulated by HFSS, a rule derived from simulated results that can aid to design the microstrip antennas is found. Finally, the structure parameters are optimized out, Which reaches 44.67% impedance bandwidth. Furthermore, this kind of configuration can also be applied to the multi-laver patch antenna.
基金Supported by National Natural Science Foundation of China (No.30800240 and No.60901043)
文摘Broadband ultrasound signals will produce distortion in viscoacoustic medium, which may influence the accuracy of time-of-flight (TOF) measurement. Under the condition of single-frequency acoustic source, the wave propagation process in viscoacoustic medium was analyzed and an approximate solution of the wave propagation was given. Instances of broadband ultrasound were analyzed and simulated based on the single-frequency results. A single-frequency matching pursuits (SFMP) algorithm was then introduced to solve the waveform distortion problem. Time-frequency decomposition was applied to extracting the single-frequency compositions from broadband ultrasound signals, and then these compositions were sent to the matching pursuits (MP) algorithm for calculating the TOF parameters. Compared with the broadband signals, the shapes of extracted single-frequency signals change more slightly as distance and attenuation coefficient increase. The residuals of SFMP were far less than those of MP algorithm. Experimental results show that the SFMP algorithm is able to eliminate waveform distortion of broadband ultrasound in viscoacoustic medium, which helps improve the accuracy of TOF measurement.
文摘In this paper, a novel and simple CPW-fed planar monopole antenna is presented for UWB application. The antenna is fabricated on inexpensive FR4 substrate and fed by 50Ω CPW on the same layer, Measured data show that the antenna provides an impedance bandwidth of about 8GHz for the return loss less than 10dB. It is also observed that the radiation pattems are nearly omni-directional over the entire frequency range. Details of the proposed antenna are presented, and simulated results are presented and discussed.