A design of coating on the entrance surface of the beam splitters with a transparent thin film of certain refractive index and thickness was presented.For this kind of beam splitters,it was possible to realize polariz...A design of coating on the entrance surface of the beam splitters with a transparent thin film of certain refractive index and thickness was presented.For this kind of beam splitters,it was possible to realize polarization-independent beam-splitting for chosen wavelength λ with incident angle .In addition,the simulation results using the coating designable software(Auto film) were consistent with the theoretical results,and the beam splitters are not sensitive to the small errors of film-thickness and film refractive-index over a broad spectra.展开更多
A high altitude platform station (HAPS) based communications scenario for providing Intemet access and broadband multimedia services to the passengers on board of a high speed train (traveling up to 300km/h) is pr...A high altitude platform station (HAPS) based communications scenario for providing Intemet access and broadband multimedia services to the passengers on board of a high speed train (traveling up to 300km/h) is proposed. Regarding the addressed scenario, when the propagation link between HAPS and train is blocked by obstacles, a three-dimensional (3-D) geometrical single cylinder spatial-temporal channel model is presented, in which closed form, mathematically tractable space-time correlation functions are obtained. It shows that the correlation functions determined by the 3-D model are of significant difference with those of the conventional 2-D model. Based on the analysis model, the paper derives a realized simulation model using sum-of-sinusoids approach, and applies method of equal areas (MEA) and modified method of equal areas (MMEA) to determine the model parameters. The fitting performance of the simulation model with the analysis one is evaluated by two means-square error (MSE) performance criteria. Finally, numerical simulation results verify the mathematical analysis conclusion, when N ≥21, simulation model has an excellent fitness with the analysis one.展开更多
The research intends to solve the problem of the occupation of bandwidth of local network by abnormal traffic which affects normal user's network behaviors.Firstly,a new algorithm in this paper named danger-theory...The research intends to solve the problem of the occupation of bandwidth of local network by abnormal traffic which affects normal user's network behaviors.Firstly,a new algorithm in this paper named danger-theory-based abnormal traffic detection was presented.Then an advanced ID3 algorithm was presented to classify the abnormal traffic.Finally a new model of anomaly traffic detection was built upon the two algorithms above and the detection results were integrated with firewall.The firewall limits the bandwidth based on different types of abnormal traffic.Experiments show the outstanding performance of the proposed approach in real-time property,high detection rate,and unsupervised learning.展开更多
In the prediction theory for the broadband noise generated from a multiblade fan, the vortices in the Karman vortex street was divided into n pieces. The frequency distribution of the noise was estimated so that the S...In the prediction theory for the broadband noise generated from a multiblade fan, the vortices in the Karman vortex street was divided into n pieces. The frequency distribution of the noise was estimated so that the Strouhal number could become constant even if the wake is spread by the diffusion. From the results of the measurement of the internal flow of the fan, it was found that the noise was related to the wake characteristics of the specific location in the scroll casing where the relative flow velocity was high. The noise operating in the vicinity of the maximum efficiency point of the fan was distributed over the domain from 500 Hz to 1250 Hz. It was experimentally proved that the influence of the Karman vortex street on the noise in the domains of high and low frequencies did not exist when the distribution of the estimated sound pressure level corresponded to the measured broadband noise.展开更多
Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current pr...Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.展开更多
The main source of the noise of an axial flow fan is the fluctuating pressure field on blade surfaces caused by the shedding of vortices at the trailing edge of blades.An analytical model to predict the vortex sheddin...The main source of the noise of an axial flow fan is the fluctuating pressure field on blade surfaces caused by the shedding of vortices at the trailing edge of blades.An analytical model to predict the vortex shedding noise generated at the trailing edge of blades of axial flow fans was proposed by Lee in 1993.In this model,for mathematical convenience,an idealized vortex street is considered.However,the agreement between the analytical results and the experimental data needs to be improved because of the simplification about the Karman vortex street in the wake of blade.In the present study,a modified model is proposed based on the prediction model by Lee.The boundary layer theory is used to analyze and calculate the boundary layer development on both the pressure and the suction sides of blades.Considering the effect of boundary layer separation on the location of noise source,the predicted overall sound pressure level compares favorably with the experimental data of an axial fan.In the calculation of A-weighted sound pressure level(La),considering the effect of static pressure on radiate energy,the predicted broadband noise with the modified model compares favorably with the experimental data of a multiblade centrifugal fan.展开更多
In this paper, we present a portable single-cell analysis system with the hydrodynamic cell trapping and the broadband electrical impedance spectroscopy (EIS). Using the least flow resistance path principle, the hyd...In this paper, we present a portable single-cell analysis system with the hydrodynamic cell trapping and the broadband electrical impedance spectroscopy (EIS). Using the least flow resistance path principle, the hydrodynamic cell trapping in serpentine arrays can be carried out in a deterministic and automatic manner without the assistance of any external fields. The experimental results show that a cell trap rate of higher than 95% can be easily achieved in our ceil trapping microdevices. Using the maximum length sequences (MLS) technique, our home-made EIS is capable of measuring the impedance spectrum ranging from 1.953 kHz to 1 MHz in approximately 0.5 ms. Finally, on the basis of the developed single-cell analysis system, we precisely monitor the trapping process of human breast tumor cells (MCF-7 cells) according to the changes of electrical impedance. The MCF-7 cells with different trapping conditions or sizes can also be clearly distinguished through the impedance signals. Our portable single-cell analysis system may provide a promising tool to monitor single cells for long periods of time or to discriminate cell types.展开更多
In order to measure the flow velocity of carbon particle suspension perpendicular to the receiving axis of ultrasound transducer, the standard deviation of photoacoustic Doppler frequency spectrum is used to estimate ...In order to measure the flow velocity of carbon particle suspension perpendicular to the receiving axis of ultrasound transducer, the standard deviation of photoacoustic Doppler frequency spectrum is used to estimate the bandwidth broadening, and the spectrum standard deviation is calculated by an auto-correlation method. A 532 nm pulsed laser with the repetition rate of 20 Hz is used as a pumping source to generate photoacoustic signal. The photoacoustic signals are detected using a focused PZT ultrasound transducer with the central frequency of 10 MHz. The suspension of carbon particles is driven by a syringe pump. The complex photoacoustic signal is calculated by Hilbert transformation from time domain signal before auto-correlation. The standard deviation of the Doppler bandwidth broadening is calculated by averaging the auto-correlation results of several individual A scans. The feasibility of the proposed method is demonstrated by measuring the spectrum standard deviation of the transversal carbon particle flow from 5.0 mm/s to 8.4 mrn/s. The experimental results show that the auto-correlation result is approximately linearly distributed within the measuring range.展开更多
文摘A design of coating on the entrance surface of the beam splitters with a transparent thin film of certain refractive index and thickness was presented.For this kind of beam splitters,it was possible to realize polarization-independent beam-splitting for chosen wavelength λ with incident angle .In addition,the simulation results using the coating designable software(Auto film) were consistent with the theoretical results,and the beam splitters are not sensitive to the small errors of film-thickness and film refractive-index over a broad spectra.
基金Supported by the National Natural Science Foundation of China (No. 60532030).
文摘A high altitude platform station (HAPS) based communications scenario for providing Intemet access and broadband multimedia services to the passengers on board of a high speed train (traveling up to 300km/h) is proposed. Regarding the addressed scenario, when the propagation link between HAPS and train is blocked by obstacles, a three-dimensional (3-D) geometrical single cylinder spatial-temporal channel model is presented, in which closed form, mathematically tractable space-time correlation functions are obtained. It shows that the correlation functions determined by the 3-D model are of significant difference with those of the conventional 2-D model. Based on the analysis model, the paper derives a realized simulation model using sum-of-sinusoids approach, and applies method of equal areas (MEA) and modified method of equal areas (MMEA) to determine the model parameters. The fitting performance of the simulation model with the analysis one is evaluated by two means-square error (MSE) performance criteria. Finally, numerical simulation results verify the mathematical analysis conclusion, when N ≥21, simulation model has an excellent fitness with the analysis one.
基金Shanghai Education Commission Foundation for Excellent Young High Education Teachers,China(No.xqz05001No.YYY-07008)
文摘The research intends to solve the problem of the occupation of bandwidth of local network by abnormal traffic which affects normal user's network behaviors.Firstly,a new algorithm in this paper named danger-theory-based abnormal traffic detection was presented.Then an advanced ID3 algorithm was presented to classify the abnormal traffic.Finally a new model of anomaly traffic detection was built upon the two algorithms above and the detection results were integrated with firewall.The firewall limits the bandwidth based on different types of abnormal traffic.Experiments show the outstanding performance of the proposed approach in real-time property,high detection rate,and unsupervised learning.
文摘In the prediction theory for the broadband noise generated from a multiblade fan, the vortices in the Karman vortex street was divided into n pieces. The frequency distribution of the noise was estimated so that the Strouhal number could become constant even if the wake is spread by the diffusion. From the results of the measurement of the internal flow of the fan, it was found that the noise was related to the wake characteristics of the specific location in the scroll casing where the relative flow velocity was high. The noise operating in the vicinity of the maximum efficiency point of the fan was distributed over the domain from 500 Hz to 1250 Hz. It was experimentally proved that the influence of the Karman vortex street on the noise in the domains of high and low frequencies did not exist when the distribution of the estimated sound pressure level corresponded to the measured broadband noise.
基金supported by the National Natural Science Foundation of China(Grant No.11574306)the China International Science and Technology Cooperation Program(Grant No.2014DFG62280)the National High Technology Program of China(Grant No.2015AA03A101)
文摘Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.
基金supported by National Natural Science Foundation of China(51206149,51376055)Zhejiang Province Science and Technology Innovation Team Project(2013TD18)
文摘The main source of the noise of an axial flow fan is the fluctuating pressure field on blade surfaces caused by the shedding of vortices at the trailing edge of blades.An analytical model to predict the vortex shedding noise generated at the trailing edge of blades of axial flow fans was proposed by Lee in 1993.In this model,for mathematical convenience,an idealized vortex street is considered.However,the agreement between the analytical results and the experimental data needs to be improved because of the simplification about the Karman vortex street in the wake of blade.In the present study,a modified model is proposed based on the prediction model by Lee.The boundary layer theory is used to analyze and calculate the boundary layer development on both the pressure and the suction sides of blades.Considering the effect of boundary layer separation on the location of noise source,the predicted overall sound pressure level compares favorably with the experimental data of an axial fan.In the calculation of A-weighted sound pressure level(La),considering the effect of static pressure on radiate energy,the predicted broadband noise with the modified model compares favorably with the experimental data of a multiblade centrifugal fan.
基金supported by the National Natural Science Foundation of China(Grant Nos.51505082,51775111,51375089 and 81572906)the Natural Science Foundation of Jiangsu Province(Grant No.BK20150606)+3 种基金the"333"Project of Jiangsu Province(Grant No.BRA2015291)the Jiangsu Graduate Innovative Research Program(Grant No.KYLX_0098)the Scientific Research Foundation of Graduate School of Southeast University(Grant No.YBJJ1428)the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201501)
文摘In this paper, we present a portable single-cell analysis system with the hydrodynamic cell trapping and the broadband electrical impedance spectroscopy (EIS). Using the least flow resistance path principle, the hydrodynamic cell trapping in serpentine arrays can be carried out in a deterministic and automatic manner without the assistance of any external fields. The experimental results show that a cell trap rate of higher than 95% can be easily achieved in our ceil trapping microdevices. Using the maximum length sequences (MLS) technique, our home-made EIS is capable of measuring the impedance spectrum ranging from 1.953 kHz to 1 MHz in approximately 0.5 ms. Finally, on the basis of the developed single-cell analysis system, we precisely monitor the trapping process of human breast tumor cells (MCF-7 cells) according to the changes of electrical impedance. The MCF-7 cells with different trapping conditions or sizes can also be clearly distinguished through the impedance signals. Our portable single-cell analysis system may provide a promising tool to monitor single cells for long periods of time or to discriminate cell types.
基金supported by the Joint Funds of the National Natural Science Foundation of China(No.U1204612)the Natural Science Foundation of He’nan Educational Committee(No.13A416180)
文摘In order to measure the flow velocity of carbon particle suspension perpendicular to the receiving axis of ultrasound transducer, the standard deviation of photoacoustic Doppler frequency spectrum is used to estimate the bandwidth broadening, and the spectrum standard deviation is calculated by an auto-correlation method. A 532 nm pulsed laser with the repetition rate of 20 Hz is used as a pumping source to generate photoacoustic signal. The photoacoustic signals are detected using a focused PZT ultrasound transducer with the central frequency of 10 MHz. The suspension of carbon particles is driven by a syringe pump. The complex photoacoustic signal is calculated by Hilbert transformation from time domain signal before auto-correlation. The standard deviation of the Doppler bandwidth broadening is calculated by averaging the auto-correlation results of several individual A scans. The feasibility of the proposed method is demonstrated by measuring the spectrum standard deviation of the transversal carbon particle flow from 5.0 mm/s to 8.4 mrn/s. The experimental results show that the auto-correlation result is approximately linearly distributed within the measuring range.