以对称层合板结构为对象,基于经典层合板理论,将其等效为单层各项异性板,采用FE-BEM法(hybrid finite element-boundary element method)分析了其在宽频噪声激励作用下的隔声特性。为验证等效方法的适用性,开展对称复合材料层合板模态...以对称层合板结构为对象,基于经典层合板理论,将其等效为单层各项异性板,采用FE-BEM法(hybrid finite element-boundary element method)分析了其在宽频噪声激励作用下的隔声特性。为验证等效方法的适用性,开展对称复合材料层合板模态测试和数值分析;为验证预估结论的正确性,将FE-BEM法结果与FE-SEA法(hybrid finite element-statistic energy analysis)结果、试验结果分别进行对比。结果表明:将等效方法用于对称层合板固有特性模拟是正确的,等效层合板的固有特性的仿真结果与试验值一致,误差在6.9%以内;等效方法和FE-BEM法结合进行对称层合板隔声预计是有效的,FE-BEM法预计结果与试验结果吻合良好;等效方法和FE-SEA法结合进行对称层合板隔声预计也是有效的,FE-BEM法比FE-SEA法所建模型计算耗时长,算例中计算耗时增大4.4%。展开更多
A gammadion terahertz(THz) metamaterial embedded with a pair of splits is experimentally investigated. By introducing the pair of splits at different arms, the transmitted amplitude at the resonance frequency can be m...A gammadion terahertz(THz) metamaterial embedded with a pair of splits is experimentally investigated. By introducing the pair of splits at different arms, the transmitted amplitude at the resonance frequency can be manipulated from 61% to 24%. Broadband static resonance tunability from 1.11 to 1.51 THz is also demonstrated via varying the relative split positions at certain arms. The amplitude change and static resonance tunability are attributed to the introduced split pairs, which enable selective excitation of different resonance modes in the gammadion metamaterials. This work promises a new approach to design THz functional devices.展开更多
文摘以对称层合板结构为对象,基于经典层合板理论,将其等效为单层各项异性板,采用FE-BEM法(hybrid finite element-boundary element method)分析了其在宽频噪声激励作用下的隔声特性。为验证等效方法的适用性,开展对称复合材料层合板模态测试和数值分析;为验证预估结论的正确性,将FE-BEM法结果与FE-SEA法(hybrid finite element-statistic energy analysis)结果、试验结果分别进行对比。结果表明:将等效方法用于对称层合板固有特性模拟是正确的,等效层合板的固有特性的仿真结果与试验值一致,误差在6.9%以内;等效方法和FE-BEM法结合进行对称层合板隔声预计是有效的,FE-BEM法预计结果与试验结果吻合良好;等效方法和FE-SEA法结合进行对称层合板隔声预计也是有效的,FE-BEM法比FE-SEA法所建模型计算耗时长,算例中计算耗时增大4.4%。
基金supported by the National Research Foundation,Prime Minister’s Office,Singapore under its Competitive Research Program(Grant No.NRF-CRP10-2012-04)
文摘A gammadion terahertz(THz) metamaterial embedded with a pair of splits is experimentally investigated. By introducing the pair of splits at different arms, the transmitted amplitude at the resonance frequency can be manipulated from 61% to 24%. Broadband static resonance tunability from 1.11 to 1.51 THz is also demonstrated via varying the relative split positions at certain arms. The amplitude change and static resonance tunability are attributed to the introduced split pairs, which enable selective excitation of different resonance modes in the gammadion metamaterials. This work promises a new approach to design THz functional devices.