安全性是移动自组网络组通信的基本需求,安全、高效的组密钥更新算法是保证组通信安全的关键.在移动自组网络分布式组密钥管理框架(distributed group key management framework,简称DGKMF)的基础上,提出了一种组密钥更新算法——DGR(di...安全性是移动自组网络组通信的基本需求,安全、高效的组密钥更新算法是保证组通信安全的关键.在移动自组网络分布式组密钥管理框架(distributed group key management framework,简称DGKMF)的基础上,提出了一种组密钥更新算法——DGR(distributed group rekeying)算法.该算法能够利用局部密钥信息更新组密钥,适合拓扑结构变化频繁、连接短暂、带宽有限的移动自组网络.为了进一步降低算法的通信代价,通过在组密钥更新时动态生成组密钥更新簇,对DGR算法进行了改进,提出了CDGR(cluster distributed group rekeying)算法,并讨论了上述算法的安全性、正确性和完备性,分析了算法的通信代价.最后,利用ns2模拟器对算法的性能进行了分析.模拟结果显示,DGR和CDGR算法在组密钥更新成功率和延迟等方面均优于其他算法,并且由于采用簇结构,CDGR算法的更新延迟低于DGR算法.展开更多
文摘安全性是移动自组网络组通信的基本需求,安全、高效的组密钥更新算法是保证组通信安全的关键.在移动自组网络分布式组密钥管理框架(distributed group key management framework,简称DGKMF)的基础上,提出了一种组密钥更新算法——DGR(distributed group rekeying)算法.该算法能够利用局部密钥信息更新组密钥,适合拓扑结构变化频繁、连接短暂、带宽有限的移动自组网络.为了进一步降低算法的通信代价,通过在组密钥更新时动态生成组密钥更新簇,对DGR算法进行了改进,提出了CDGR(cluster distributed group rekeying)算法,并讨论了上述算法的安全性、正确性和完备性,分析了算法的通信代价.最后,利用ns2模拟器对算法的性能进行了分析.模拟结果显示,DGR和CDGR算法在组密钥更新成功率和延迟等方面均优于其他算法,并且由于采用簇结构,CDGR算法的更新延迟低于DGR算法.