By measuring the variation of the P-and S-wave velocities of tight sandstone samples under water saturation,it was confirmed that with the decrease in water saturation,the P-wave velocity first decreased and then incr...By measuring the variation of the P-and S-wave velocities of tight sandstone samples under water saturation,it was confirmed that with the decrease in water saturation,the P-wave velocity first decreased and then increased.The variation in velocity was influenced by the sandstone’s porosity.The commonly used Gassmann equation based on fluid substitution theory was studied.Comparing the calculated results with the measured data,it was found that the Gassmann equation agreed well with the measured data at high water saturation,but it could not explain the bending phenomenon of P-wave velocity at low saturation.This indicated that these equations could not accurately describe the relationship between fluid content and rock acoustic velocity.The reasons for this phenomenon were discussed through Taylor’s expansion.The coefficients of the fitting formula were calculated and verified by fitting the measured acoustic velocity changes of the cores.The relationship between P-wave velocity and saturation was discussed,which provides experimental support for calculating saturation using seismic and acoustic logging data.展开更多
Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sand...Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sands is very common and the relationship between pore- structure and electrical property is often unclear.We propose a new parameterδ,integrating porosity,maximum radius of connected pore-throats,and sorting degree,for investigating the permeability and electrical properties of tight sands.Core data and wireline log analyses show that this newδcan be used to accurately predict the tight sands permeability and has a close relation with electrical parameters,allowing the estimation of formation factor F and cementation exponent m.The normalization of the resistivity difference caused by the pore- structure is used to highlight the influence of fluid type on Rt,enhancing the coincidence rate in the Pickett crossplot significantly.展开更多
Tight gas sandstone reservoirs in Guang'an are characterized by wide distribution and low abundance. Sandstone samples from this area usually have low porosity and poor connectivity. We analyze the observed velocity ...Tight gas sandstone reservoirs in Guang'an are characterized by wide distribution and low abundance. Sandstone samples from this area usually have low porosity and poor connectivity. We analyze the observed velocity data of tight sandstone samples with the Mori- Tanaka model, and give the sandstone framework physical model in this area based on theory and experiment analysis. The matrix modulus was obtained by an empirical relationship and then the experiment data were compared with the values predicted by the Mori-Tanaka model with different pore shapes. The results revealed that the experiment data were close to the model with low pore aspect ratio. Considering the matrix modulus and pore shape variation, we find that, under the condition of small mineral composition change, the effective pore aspect ratio of these samples increased with porosity evidently.展开更多
The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production ...The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs.展开更多
The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters(e.g., wave velocity) depend on poros...The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters(e.g., wave velocity) depend on porosity and pore structure. We estimated the average specific surface, average pore-throat radius, pore roundness, and average aspect ratio of carbonate rocks from the Tazhong area. High P-wave velocity samples have small average specific surface, small average pore-throat radius, and large average aspect ratio. Differences in the pore structure of dense carbonate samples lead to fluid-related velocity variability. However, the relation between velocity dispersion and average specific surface, or the average aspect ratio, is not linear. For large or small average specific surface, the pore structure of the rock samples becomes uniform, which weakens squirt fl ow and minimizes the residuals of ultrasonic data and predictions with the Gassmann equation. When rigid dissolved(casting mold) pores coexist with less rigid microcracks, there are significant P-wave velocity differences between measurements and predictions.展开更多
Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of...Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of tight sandstone samples obtained from oil fields and compares results with those of shale. Results firstly show that the anisotropy of tight sandstone is mainly related to the compositional layering and thin interbedding which occur in different sedimentary environments. Tight sandstone has typical transverse isotropic medium characteristics, Young’s modulus increases in different directions with increasing confining pressure, Poisson’s ratio change is not obvious, anisotropic coefficients decrease with increasing effective pressure, and a certain linear relationship exists between ε, γ, and δ. This article finally summarizes anisotropy in different areas, thereby providing a foundation for the use of suitable appraisal models in different regions. This research can be used as an experimental reference for logging evaluation, seismic data interpretation, and fracturing develop of tight sandstones.展开更多
Rock-physics models are constructed for hydrate-bearing sediments in the Qilian Mountains permafrost region using the K–T equation model, and modes I and II of the effective medium model. The K–T equation models the...Rock-physics models are constructed for hydrate-bearing sediments in the Qilian Mountains permafrost region using the K–T equation model, and modes I and II of the effective medium model. The K–T equation models the seismic wave propagation in a two-phase medium to determine the elastic moduli of the composite medium. In the effective medium model, mode I, the hydrate is a component of the pore inclusions in mode I and in mode II it is a component of the matrix. First, the P-wave velocity, S-wave velocity, density, bulk modulus, and shear modulus of the sediment matrix are extracted from logging data.. Second, based on the physical properties of the main components of the sediments, rock-physics model is established using the K–T equation, and two additional rock-physics models are established assuming different hydrate-filling modes for the effective medium. The model and actual velocity data for the hydrate-bearing sediments are compared and it is found that the rock-physics model for the hydrate-filling mode II well reproduces the actual data.展开更多
Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock ph...Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.展开更多
We simulated hydraulic fracturing in different lithologic rocks in the horizontal drilling by using the true physical model experiment and large rock specimens, carried out the real-time dynamic monitoring with adding...We simulated hydraulic fracturing in different lithologic rocks in the horizontal drilling by using the true physical model experiment and large rock specimens, carried out the real-time dynamic monitoring with adding tracer and then did post-fracturing cutting and so on. Based on this monitoring results, we compared and assessed the factors affecting expansion in shale, shell limestone, and tight sandstone and the fracture expansion in these rocks. In shale, the reformed reservoir volume is the highest, fracture network is formed in the process of fracturing. In tight sandstone, the fracture surface boundaries are curved, and the fracture surface area accounts for 25–50% of the entire specimen. In shell limestone, the complexity of the fracture morphology is between shale and tight sandstone, but no fracture network is developed. Brittleness controls the fracture surface area. In highly brittle rocks, the fracture surface area is high. Fracture toughness mainly affects the initiation and propagation of cracks. A fracture network is formed only if bedding planes are present and are more weaker than their corresponding matrix. The horizontal in situ deviatoric stress affects the crack propagation direction, and different lithologies have different horizontal in situ deviatoric stress thresholds. Low f luid injection rate facilitates the formation of complex cracks, whereas high fluid injection rate favors the development of fractures. Fluid injection weakly controls the complexity of hydraulic fracturing in low-brittleness rocks, whereas lowviscosity fracturing fluids favor the formation of complex cracks owing to easy enter microcracks and micro-pore. Displacement has a greater impact on high brittle rocks than low brittle rocks.展开更多
The traditional reservoir classification methods based on conventional well logging are inefficient for determining the properties,such as the porosity,shale volume,J function,and flow zone index,of the tight sandston...The traditional reservoir classification methods based on conventional well logging are inefficient for determining the properties,such as the porosity,shale volume,J function,and flow zone index,of the tight sandstone reservoirs because of their complex pore structure and large heterogeneity.Specifically,the method that is commonly used to characterize the reservoir pore structure is dependent on the nuclear magnetic resonance(NMR)transverse relaxation time(T2)distribution,which is closely related to the pore size distribution.Further,the pore structure parameters(displacement pressure,maximum pore-throat radius,and median pore-throat radius)can be determined and applied to reservoir classification based on the empirical linear or power function obtained from the NMR T2 distributions and the mercury intrusion capillary pressure ourves.However,the effective generalization of these empirical functions is difficult because they differ according to the region and are limited by the representative samples of different regions.A lognormal distribution is commonly used to describe the pore size and particle size distributions of the rock and quantitatively characterize the reservoir pore structure based on the volume,mean radius,and standard deviation of the small and large pores.In this study,we obtain six parameters(the volume,mean radius,and standard deviation of the small and large pores)that represent the characteristics of pore distribution and rock heterogeneity,calculate the total porosity via NMR logging,and classify the reservoirs via cluster analysis by adopting a bimodal lognormal distribution to fit the NMR T2 spectrum.Finally,based on the data obtained from the core tests and the NMR logs,the proposed method,which is readily applicable,can effectively classify the tight sandstone reservoirs.展开更多
Fluid typing from nuclear magnetic resonance(NMR)logging in oil-wet tight sandstone reservoirs is proving to be diffi cult;thus,research into the NMR logging response mechanism and analysis methods is critical.The NMR...Fluid typing from nuclear magnetic resonance(NMR)logging in oil-wet tight sandstone reservoirs is proving to be diffi cult;thus,research into the NMR logging response mechanism and analysis methods is critical.The NMR response mechanism and theoretical method were investigated based on the oil-water distribution in the pores under oil-wet conditions.The data processing method is studied based on NMR dual-TW activation principle,and the equations of macroscopic magnetization vector,fl uid volume,and relaxation parameters are derived,which is a nonlinear inversion problem.The simulated annealing algorithm is used,and the fl uid relaxation parameters,oil volume,and water volume of the fl ushing zone are calculated.An ideal reservoir model is set up,and simulation results indicate that the above-mentioned NMR relaxation theory and algorithms are valid.A case study is conducted in Huanjiang Oilfi eld in the Ordos Basin,China.The calculated oil saturation of the fl ushing zone is consistent with the oil saturation calculated using the Archie formula,and the test results indicated that the new method is applicable.Moreover,the fl uid-typing cross-plot combined with oil test data is constructed on the basis of the saturation of the fl ushing zone,improving the accuracy of fl uid identifi cation.展开更多
Ground subsidence induced by extraction of coal seam belowground brings about changes in surface environment leading to trough and pot-hole subsidence.Pot-hole subsidence is extremely hazardous and does not give any p...Ground subsidence induced by extraction of coal seam belowground brings about changes in surface environment leading to trough and pot-hole subsidence.Pot-hole subsidence is extremely hazardous and does not give any prior indication before its occurrence.In India,several pot-holes have occurred in the coal mines of South Eastern Coalfields Limited triggering the need for in-depth studies.In line with the requirement,literature review and field investigations were conducted to develop an in-depth understanding of various parameters influencing the occurrence of pot-holes.The critical parameters identified were rock to soil ratio,depth to height of extraction ratio,brittleness index of rock and rock density.Risk assessment of pot-hole subsidence has been done by developing an empirical rating approach named as pot-hole subsidence rating(PHSR),involving the critical parameters with suitable corrections for certain structural and mining conditions to obtain corrected PHSR(CPHSR).CPHSR was then applied for all the 34pot-holes studied and it was found that all the pot-holes fall under Class I and Class II category of risk representing a very high to high risk class.An effort was made for the estimation of pot-hole depth utilizing the developed CPHSR in both the development and depillaring cases.The developed approach was found to yield consistent results in pot-hole depth prediction.展开更多
Existing seismic prediction methods struggle to effectively discriminate between fluids in tight gas reservoirs,such as those in the Sulige gas field in the Ordos Basin,where porosity and permeability are extremely lo...Existing seismic prediction methods struggle to effectively discriminate between fluids in tight gas reservoirs,such as those in the Sulige gas field in the Ordos Basin,where porosity and permeability are extremely low and the relationship between gas and water is complicated.In this paper,we have proposed a comprehensive seismic fluid identification method that combines ray-path elastic impedance(REI)inversion with fluid substitution for tight reservoirs.This approach is grounded in geophysical theory,forward modeling,and real data applications.We used geophysics experiments in tight gas reservoirs to determine that Brie's model is better suited to calculate the elastic parameters of mixed fluids than the conventional Wood’s model.This yielded a more reasonable and accurate fluid substitution model for tight gas reservoirs.We developed a forward model and carried out inversion of REI.which reduced the non-uniqueness problem that has plagued elastic impedance inversion in the angle domain.Our well logging forward model in the ray-path domain with different fluid saturations based on a fluid substitution model proved that REI identifies fluids more accurately when the ray parameters are large.The distribution of gas saturation can be distinguished from the crossplot of REI(p=0.10)and porosity.The inverted ray-path elastic impedance profile was further used to predict the porosity and gas saturation profile.Our new method achieved good results in the application of 2D seismic data in the western Sulige gas field.展开更多
In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter spli...In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity.展开更多
To predict joint development characteristics of coal seams, joint characteristics of rock seams from 88field stations were observed and comparisons were made between joint characteristics of coal and rock seams at 10 ...To predict joint development characteristics of coal seams, joint characteristics of rock seams from 88field stations were observed and comparisons were made between joint characteristics of coal and rock seams at 10 coal outcrops. Additionally, detailed joint measurements of underground coal seams were taken at two coal mines. This study investigated the effects of seam thickness, lithology, and structure on joint development and established the relationship between joint development of coal and rock seams, which allowed predictions of predominant joint densities for the No.5 coal seam in the southeastern margin of the Ordos basin. The results show that outcrop and underground coal seams exhibit the same joint systems as rock seams. The joints are mainly upright. Predominant joints strike 55° on average, followed by joints striking 320°. The joint density of the coal seam is 18.7–22.5 times that of the sandstone seam at the same thickness. The predominant joint density of the No.5 coal seam, controlled by the structure, is 4–20 joints per meter. Joint densities exhibit high values at intersecting areas of faults and folds and decrease values in structurally stable areas. The permeability increases exponentially with increasing density of the predominant joints.展开更多
The sequence of the densification and hydrocarbon charging of the Xu2 reservoir in the Anyue–Hechuan area of Central Sichuan Basin is discussed.The diagenetic sequence is considered a time line to determine the histo...The sequence of the densification and hydrocarbon charging of the Xu2 reservoir in the Anyue–Hechuan area of Central Sichuan Basin is discussed.The diagenetic sequence is considered a time line to determine the historical relationship between the densification process and the hydrocarbon charging of the Xu2 reservoir in the study area:Early diagenetic stage B(the first stage of hydrocarbon charging,which was about 200–160 Ma ago,with a porosity of about 20%,consolidated and not tight)→middle diagenetic stage A(the second stage of hydrocarbon charging,which was about 140–120 Ma ago,with a porosity of 10%–20%and relatively tight)→middle diagenetic stage B(the third stage of hydrocarbon charging,which was about 20–5 Ma ago,with a porosity of 6%–10%and tight;However,fractures have developed).The study results prove that large-scale hydrocarbon charging and accumulation completed before the densification of the Xu2 reservoir,showing that the Upper Triassic Xujiahe Fm unconventional tight reservoir in the Sichuan Basin is prospective for exploration.展开更多
Water shutoff through injection wells is one of the most important techniques used for water injection profile control and modification in severely heterogeneous reservoirs,aiming at stabilizing oil production.It has ...Water shutoff through injection wells is one of the most important techniques used for water injection profile control and modification in severely heterogeneous reservoirs,aiming at stabilizing oil production.It has been widely reported that the effectiveness and efficiency of water shutoff using gel is mostly dependent on the gel dynamic sealing properties in the porous media.Firstly the gelation strength and gelation time of polymer gel were evaluated.Then,core flowing experiments were conducted before and after gelation in a 32 m long sand pack.In addition,water flooding core experiments were also carried out in a long core of 80 cm before and after injecting gel system to check the reliability of this evaluation method.The experimental results show that moderate-strength gel can be formed at 65 °C.According to the integrated evaluation of the plugging coefficient,plugging strength and water breakthrough time,the gel particles are capable of migrating to a distance of 7.47 m from the injection point of the 32 m long sand pack during the water injection process after gelation.Based on sands gelation status and effluent analyses,the effective migration distance of the gel particles is 4-14 m.Through the core flooding experiments using the 80 cm heterogeneous core,it is evidenced that the gel can be formed in the deep reservoir(40.63% of total length) with the plugging strength as high as 6.33 MPa/m,which leads to extra oil recovery of 10.55% of original oil in place(OOIP) by water flooding after gel treatment.展开更多
The intra-formational seal capability was characterized by multi-layered shale baffles to act as the primary or ultimate cap system, were taken into account by homogeneous and heterogeneous models, respectively. In th...The intra-formational seal capability was characterized by multi-layered shale baffles to act as the primary or ultimate cap system, were taken into account by homogeneous and heterogeneous models, respectively. In this study, the relevant ranges of input parameter of porosity (20%-35%) and permeability (0.0001-1,000 mD), respectively for the sandstone (storage layers) and shale (seals) have been selected, according to results of large amount of laboratory core, test from pilot 3,000 m drilling within Tai-Hsi Foreland Basin in Western Taiwan. By a comprehensive geological model, typical single well injected plume migration scenarios were stochastically simulated which covered a 20-year continuous injection (one Mt-CO2 per year) followed by a 1,000-year post-injection monitoring. The corresponding 2-D MHMD (maximum horizontal migration distances) of CO2 plume in the storage reservoir had been calculated with respect to heterogeneous reservoir models and their homogeneous counterparts. Moreover, the induced pressures at critical monitoring points above the injection zone were also evaluated. As a result, the shale baffles of intra-formational seal in a saline aquifers are proven to play a vital role, and capable of ensuring the safe carbon storage operation within a basin scale with a depth range about 2,100-2,500 mRT.展开更多
Tight reservoirs are widely distributed, especially in coal measure strata. Identification of the densification mechanism of the tight sandstone reservoirs is critical in effectively exploring and exploiting tight gas...Tight reservoirs are widely distributed, especially in coal measure strata. Identification of the densification mechanism of the tight sandstone reservoirs is critical in effectively exploring and exploiting tight gasoil resources. In this study, the gas for mation from type III organic matter in coal was kinetically modeled for the whole diagenetic stage, from the shallow buried biogas generation stage to the deep buried thermal gas generation stage. The results demonstrated that during hydrocarbon formation, quantities of nonhydrocarbon gases, such as CO2, were generated. The proportion of CO2 is about 50%70% of that of the C15, which far exceeds the CO2 content (05%) in the natural gas in the sedimentary basins. Geological case study analysis showed that a considerable part of the "lost" gaseous CO2 was converted into carbonate cement under favorable envi ronments. Under the ideal conditions, the volume of the carbonate cement transformed from total CO2 generated by 1 m3 coal (Junggar Basin Jurassic, TOC 67%) can amount to 0.32 m3. Obviously, this process plays a very important role in the for mation of tight sandstone reservoirs in the coal measures. Our results also show that the kinetic generation processes of Ci5 and CO2 are asynchronous. There are two main stages of CO2 generation, one at the weak diagenetic stage and the other at the overmature stage, which are different from largescale multistage hydrocarbon gas generation. Therefore, we can understand the mechanism of tight gas charging by determining the filling time for a tight gas reservoir and the key period of CO2 genera tion. Further analysis and correlation studies of a specific region are of great significance for determining the mechanism and modeling gas charging in tight reservoirs. It should be noted that the formation of tight sandstone reservoirs is the combined result of complex organicinorganic and waterrockhydrocarbon interactions. The details of spatial and temporal distributions of the carbonate cement derived from the organic C02, which combines with metal ions (Ca/Mg/Fe) in the formation water, should be further investigated.展开更多
文摘By measuring the variation of the P-and S-wave velocities of tight sandstone samples under water saturation,it was confirmed that with the decrease in water saturation,the P-wave velocity first decreased and then increased.The variation in velocity was influenced by the sandstone’s porosity.The commonly used Gassmann equation based on fluid substitution theory was studied.Comparing the calculated results with the measured data,it was found that the Gassmann equation agreed well with the measured data at high water saturation,but it could not explain the bending phenomenon of P-wave velocity at low saturation.This indicated that these equations could not accurately describe the relationship between fluid content and rock acoustic velocity.The reasons for this phenomenon were discussed through Taylor’s expansion.The coefficients of the fitting formula were calculated and verified by fitting the measured acoustic velocity changes of the cores.The relationship between P-wave velocity and saturation was discussed,which provides experimental support for calculating saturation using seismic and acoustic logging data.
基金supported by Major National Oil & Gas Specific Project(Grant No.2008ZX05020-001)
文摘Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sands is very common and the relationship between pore- structure and electrical property is often unclear.We propose a new parameterδ,integrating porosity,maximum radius of connected pore-throats,and sorting degree,for investigating the permeability and electrical properties of tight sands.Core data and wireline log analyses show that this newδcan be used to accurately predict the tight sands permeability and has a close relation with electrical parameters,allowing the estimation of formation factor F and cementation exponent m.The normalization of the resistivity difference caused by the pore- structure is used to highlight the influence of fluid type on Rt,enhancing the coincidence rate in the Pickett crossplot significantly.
基金supported by the National Natural Foundation of China (No. 41104066)the Basic Research Programs of CNPC during the 12th Five-Year Plan Period (No. 2011A-3601)+1 种基金the Major State Basic Research Development Program of China (No. 2007CB209505)RIPED Young Innovation Foundation (No. 2010-A-26-01)
文摘Tight gas sandstone reservoirs in Guang'an are characterized by wide distribution and low abundance. Sandstone samples from this area usually have low porosity and poor connectivity. We analyze the observed velocity data of tight sandstone samples with the Mori- Tanaka model, and give the sandstone framework physical model in this area based on theory and experiment analysis. The matrix modulus was obtained by an empirical relationship and then the experiment data were compared with the values predicted by the Mori-Tanaka model with different pore shapes. The results revealed that the experiment data were close to the model with low pore aspect ratio. Considering the matrix modulus and pore shape variation, we find that, under the condition of small mineral composition change, the effective pore aspect ratio of these samples increased with porosity evidently.
文摘The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs.
基金supported by the Natural Science Foundation of China(No.41274138)
文摘The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters(e.g., wave velocity) depend on porosity and pore structure. We estimated the average specific surface, average pore-throat radius, pore roundness, and average aspect ratio of carbonate rocks from the Tazhong area. High P-wave velocity samples have small average specific surface, small average pore-throat radius, and large average aspect ratio. Differences in the pore structure of dense carbonate samples lead to fluid-related velocity variability. However, the relation between velocity dispersion and average specific surface, or the average aspect ratio, is not linear. For large or small average specific surface, the pore structure of the rock samples becomes uniform, which weakens squirt fl ow and minimizes the residuals of ultrasonic data and predictions with the Gassmann equation. When rigid dissolved(casting mold) pores coexist with less rigid microcracks, there are significant P-wave velocity differences between measurements and predictions.
基金sponsored by the National Key Technology R&D Program for the 12th five-year plan(No.2011ZX05020-008)the China National Petroleum Corporation Logging Basic Research Project(No.2014A-3910)
文摘Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of tight sandstone samples obtained from oil fields and compares results with those of shale. Results firstly show that the anisotropy of tight sandstone is mainly related to the compositional layering and thin interbedding which occur in different sedimentary environments. Tight sandstone has typical transverse isotropic medium characteristics, Young’s modulus increases in different directions with increasing confining pressure, Poisson’s ratio change is not obvious, anisotropic coefficients decrease with increasing effective pressure, and a certain linear relationship exists between ε, γ, and δ. This article finally summarizes anisotropy in different areas, thereby providing a foundation for the use of suitable appraisal models in different regions. This research can be used as an experimental reference for logging evaluation, seismic data interpretation, and fracturing develop of tight sandstones.
基金supported by the Institute of Geophysical and Geochemical Exploration(IGGE)CAGS of China(No.WH201207)
文摘Rock-physics models are constructed for hydrate-bearing sediments in the Qilian Mountains permafrost region using the K–T equation model, and modes I and II of the effective medium model. The K–T equation models the seismic wave propagation in a two-phase medium to determine the elastic moduli of the composite medium. In the effective medium model, mode I, the hydrate is a component of the pore inclusions in mode I and in mode II it is a component of the matrix. First, the P-wave velocity, S-wave velocity, density, bulk modulus, and shear modulus of the sediment matrix are extracted from logging data.. Second, based on the physical properties of the main components of the sediments, rock-physics model is established using the K–T equation, and two additional rock-physics models are established assuming different hydrate-filling modes for the effective medium. The model and actual velocity data for the hydrate-bearing sediments are compared and it is found that the rock-physics model for the hydrate-filling mode II well reproduces the actual data.
基金supported by the National 973 project(Nos.2014CB239006 and 2011CB202402)the National Natural Science Foundation of China(Nos.41104069 and 41274124)+1 种基金Sinopec project(No.KJWX2014-05)the Fundamental Research Funds for the Central Universities(No.R1401005A)
文摘Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.
基金supported by the National Key Research and Development Program Funding Project(2018YFC1504903)the National Natural Science Foundation of China(Nos.51574218,51678171,51608139,U1704243,and 51709113)+2 种基金Guangdong Science and Technology Department(No.2015B020238014)Guangzhou Science Technology and Innovation Commission(No.201604016021)High-level Talent Research Launch Project(No.950318066)
文摘We simulated hydraulic fracturing in different lithologic rocks in the horizontal drilling by using the true physical model experiment and large rock specimens, carried out the real-time dynamic monitoring with adding tracer and then did post-fracturing cutting and so on. Based on this monitoring results, we compared and assessed the factors affecting expansion in shale, shell limestone, and tight sandstone and the fracture expansion in these rocks. In shale, the reformed reservoir volume is the highest, fracture network is formed in the process of fracturing. In tight sandstone, the fracture surface boundaries are curved, and the fracture surface area accounts for 25–50% of the entire specimen. In shell limestone, the complexity of the fracture morphology is between shale and tight sandstone, but no fracture network is developed. Brittleness controls the fracture surface area. In highly brittle rocks, the fracture surface area is high. Fracture toughness mainly affects the initiation and propagation of cracks. A fracture network is formed only if bedding planes are present and are more weaker than their corresponding matrix. The horizontal in situ deviatoric stress affects the crack propagation direction, and different lithologies have different horizontal in situ deviatoric stress thresholds. Low f luid injection rate facilitates the formation of complex cracks, whereas high fluid injection rate favors the development of fractures. Fluid injection weakly controls the complexity of hydraulic fracturing in low-brittleness rocks, whereas lowviscosity fracturing fluids favor the formation of complex cracks owing to easy enter microcracks and micro-pore. Displacement has a greater impact on high brittle rocks than low brittle rocks.
基金supported by the by the National Science and Technology Major Project “Prediction Technique and Evaluation of Tight Oil Sweet Spot”(2016ZX05046-002)
文摘The traditional reservoir classification methods based on conventional well logging are inefficient for determining the properties,such as the porosity,shale volume,J function,and flow zone index,of the tight sandstone reservoirs because of their complex pore structure and large heterogeneity.Specifically,the method that is commonly used to characterize the reservoir pore structure is dependent on the nuclear magnetic resonance(NMR)transverse relaxation time(T2)distribution,which is closely related to the pore size distribution.Further,the pore structure parameters(displacement pressure,maximum pore-throat radius,and median pore-throat radius)can be determined and applied to reservoir classification based on the empirical linear or power function obtained from the NMR T2 distributions and the mercury intrusion capillary pressure ourves.However,the effective generalization of these empirical functions is difficult because they differ according to the region and are limited by the representative samples of different regions.A lognormal distribution is commonly used to describe the pore size and particle size distributions of the rock and quantitatively characterize the reservoir pore structure based on the volume,mean radius,and standard deviation of the small and large pores.In this study,we obtain six parameters(the volume,mean radius,and standard deviation of the small and large pores)that represent the characteristics of pore distribution and rock heterogeneity,calculate the total porosity via NMR logging,and classify the reservoirs via cluster analysis by adopting a bimodal lognormal distribution to fit the NMR T2 spectrum.Finally,based on the data obtained from the core tests and the NMR logs,the proposed method,which is readily applicable,can effectively classify the tight sandstone reservoirs.
基金This work was supported by the National Natural Science Foundation of China(41774144)the National Science and Technology Major Project“The Demonstration Project for Exploration and Development of Large Lithostratigraphic Oil and Gas Reservoirs in the Ordos Basin(2016ZX05050).
文摘Fluid typing from nuclear magnetic resonance(NMR)logging in oil-wet tight sandstone reservoirs is proving to be diffi cult;thus,research into the NMR logging response mechanism and analysis methods is critical.The NMR response mechanism and theoretical method were investigated based on the oil-water distribution in the pores under oil-wet conditions.The data processing method is studied based on NMR dual-TW activation principle,and the equations of macroscopic magnetization vector,fl uid volume,and relaxation parameters are derived,which is a nonlinear inversion problem.The simulated annealing algorithm is used,and the fl uid relaxation parameters,oil volume,and water volume of the fl ushing zone are calculated.An ideal reservoir model is set up,and simulation results indicate that the above-mentioned NMR relaxation theory and algorithms are valid.A case study is conducted in Huanjiang Oilfi eld in the Ordos Basin,China.The calculated oil saturation of the fl ushing zone is consistent with the oil saturation calculated using the Archie formula,and the test results indicated that the new method is applicable.Moreover,the fl uid-typing cross-plot combined with oil test data is constructed on the basis of the saturation of the fl ushing zone,improving the accuracy of fl uid identifi cation.
基金Financial support for this work is provided by M/s SECL,CIL,India
文摘Ground subsidence induced by extraction of coal seam belowground brings about changes in surface environment leading to trough and pot-hole subsidence.Pot-hole subsidence is extremely hazardous and does not give any prior indication before its occurrence.In India,several pot-holes have occurred in the coal mines of South Eastern Coalfields Limited triggering the need for in-depth studies.In line with the requirement,literature review and field investigations were conducted to develop an in-depth understanding of various parameters influencing the occurrence of pot-holes.The critical parameters identified were rock to soil ratio,depth to height of extraction ratio,brittleness index of rock and rock density.Risk assessment of pot-hole subsidence has been done by developing an empirical rating approach named as pot-hole subsidence rating(PHSR),involving the critical parameters with suitable corrections for certain structural and mining conditions to obtain corrected PHSR(CPHSR).CPHSR was then applied for all the 34pot-holes studied and it was found that all the pot-holes fall under Class I and Class II category of risk representing a very high to high risk class.An effort was made for the estimation of pot-hole depth utilizing the developed CPHSR in both the development and depillaring cases.The developed approach was found to yield consistent results in pot-hole depth prediction.
基金supported by the National Science and Technology Major Project(No.2016ZX05050 and 2017ZX05069)CNPC Major Technology Special Project(No.2016E-0503)
文摘Existing seismic prediction methods struggle to effectively discriminate between fluids in tight gas reservoirs,such as those in the Sulige gas field in the Ordos Basin,where porosity and permeability are extremely low and the relationship between gas and water is complicated.In this paper,we have proposed a comprehensive seismic fluid identification method that combines ray-path elastic impedance(REI)inversion with fluid substitution for tight reservoirs.This approach is grounded in geophysical theory,forward modeling,and real data applications.We used geophysics experiments in tight gas reservoirs to determine that Brie's model is better suited to calculate the elastic parameters of mixed fluids than the conventional Wood’s model.This yielded a more reasonable and accurate fluid substitution model for tight gas reservoirs.We developed a forward model and carried out inversion of REI.which reduced the non-uniqueness problem that has plagued elastic impedance inversion in the angle domain.Our well logging forward model in the ray-path domain with different fluid saturations based on a fluid substitution model proved that REI identifies fluids more accurately when the ray parameters are large.The distribution of gas saturation can be distinguished from the crossplot of REI(p=0.10)and porosity.The inverted ray-path elastic impedance profile was further used to predict the porosity and gas saturation profile.Our new method achieved good results in the application of 2D seismic data in the western Sulige gas field.
基金Projects(50674107, 10472134, 50490274) supported by the National Natural Science Foundation of China
文摘In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity.
基金Financial support for this work, provided by the National Science and Technology Major Project (No. 2011ZX05034-001)
文摘To predict joint development characteristics of coal seams, joint characteristics of rock seams from 88field stations were observed and comparisons were made between joint characteristics of coal and rock seams at 10 coal outcrops. Additionally, detailed joint measurements of underground coal seams were taken at two coal mines. This study investigated the effects of seam thickness, lithology, and structure on joint development and established the relationship between joint development of coal and rock seams, which allowed predictions of predominant joint densities for the No.5 coal seam in the southeastern margin of the Ordos basin. The results show that outcrop and underground coal seams exhibit the same joint systems as rock seams. The joints are mainly upright. Predominant joints strike 55° on average, followed by joints striking 320°. The joint density of the coal seam is 18.7–22.5 times that of the sandstone seam at the same thickness. The predominant joint density of the No.5 coal seam, controlled by the structure, is 4–20 joints per meter. Joint densities exhibit high values at intersecting areas of faults and folds and decrease values in structurally stable areas. The permeability increases exponentially with increasing density of the predominant joints.
基金Project(41372141) supported by the National Natural Science Foundation of ChinaProject(2008ZX05001–05–01) supported by Special and Significant Project of National Science and Technology,China
文摘The sequence of the densification and hydrocarbon charging of the Xu2 reservoir in the Anyue–Hechuan area of Central Sichuan Basin is discussed.The diagenetic sequence is considered a time line to determine the historical relationship between the densification process and the hydrocarbon charging of the Xu2 reservoir in the study area:Early diagenetic stage B(the first stage of hydrocarbon charging,which was about 200–160 Ma ago,with a porosity of about 20%,consolidated and not tight)→middle diagenetic stage A(the second stage of hydrocarbon charging,which was about 140–120 Ma ago,with a porosity of 10%–20%and relatively tight)→middle diagenetic stage B(the third stage of hydrocarbon charging,which was about 20–5 Ma ago,with a porosity of 6%–10%and tight;However,fractures have developed).The study results prove that large-scale hydrocarbon charging and accumulation completed before the densification of the Xu2 reservoir,showing that the Upper Triassic Xujiahe Fm unconventional tight reservoir in the Sichuan Basin is prospective for exploration.
基金Project(2011ZX05009-004)supported by the National Significant Science and Technology Program of China
文摘Water shutoff through injection wells is one of the most important techniques used for water injection profile control and modification in severely heterogeneous reservoirs,aiming at stabilizing oil production.It has been widely reported that the effectiveness and efficiency of water shutoff using gel is mostly dependent on the gel dynamic sealing properties in the porous media.Firstly the gelation strength and gelation time of polymer gel were evaluated.Then,core flowing experiments were conducted before and after gelation in a 32 m long sand pack.In addition,water flooding core experiments were also carried out in a long core of 80 cm before and after injecting gel system to check the reliability of this evaluation method.The experimental results show that moderate-strength gel can be formed at 65 °C.According to the integrated evaluation of the plugging coefficient,plugging strength and water breakthrough time,the gel particles are capable of migrating to a distance of 7.47 m from the injection point of the 32 m long sand pack during the water injection process after gelation.Based on sands gelation status and effluent analyses,the effective migration distance of the gel particles is 4-14 m.Through the core flooding experiments using the 80 cm heterogeneous core,it is evidenced that the gel can be formed in the deep reservoir(40.63% of total length) with the plugging strength as high as 6.33 MPa/m,which leads to extra oil recovery of 10.55% of original oil in place(OOIP) by water flooding after gel treatment.
文摘The intra-formational seal capability was characterized by multi-layered shale baffles to act as the primary or ultimate cap system, were taken into account by homogeneous and heterogeneous models, respectively. In this study, the relevant ranges of input parameter of porosity (20%-35%) and permeability (0.0001-1,000 mD), respectively for the sandstone (storage layers) and shale (seals) have been selected, according to results of large amount of laboratory core, test from pilot 3,000 m drilling within Tai-Hsi Foreland Basin in Western Taiwan. By a comprehensive geological model, typical single well injected plume migration scenarios were stochastically simulated which covered a 20-year continuous injection (one Mt-CO2 per year) followed by a 1,000-year post-injection monitoring. The corresponding 2-D MHMD (maximum horizontal migration distances) of CO2 plume in the storage reservoir had been calculated with respect to heterogeneous reservoir models and their homogeneous counterparts. Moreover, the induced pressures at critical monitoring points above the injection zone were also evaluated. As a result, the shale baffles of intra-formational seal in a saline aquifers are proven to play a vital role, and capable of ensuring the safe carbon storage operation within a basin scale with a depth range about 2,100-2,500 mRT.
基金supported by National Natural Science Foundation of China (Grant No. 40873031)China Petroleum Foundation (Grant Nos. 2012Y-011, 2011B-0601)National Oil and Gas Special Foundation (Grant No. 2011ZX05007-001)
文摘Tight reservoirs are widely distributed, especially in coal measure strata. Identification of the densification mechanism of the tight sandstone reservoirs is critical in effectively exploring and exploiting tight gasoil resources. In this study, the gas for mation from type III organic matter in coal was kinetically modeled for the whole diagenetic stage, from the shallow buried biogas generation stage to the deep buried thermal gas generation stage. The results demonstrated that during hydrocarbon formation, quantities of nonhydrocarbon gases, such as CO2, were generated. The proportion of CO2 is about 50%70% of that of the C15, which far exceeds the CO2 content (05%) in the natural gas in the sedimentary basins. Geological case study analysis showed that a considerable part of the "lost" gaseous CO2 was converted into carbonate cement under favorable envi ronments. Under the ideal conditions, the volume of the carbonate cement transformed from total CO2 generated by 1 m3 coal (Junggar Basin Jurassic, TOC 67%) can amount to 0.32 m3. Obviously, this process plays a very important role in the for mation of tight sandstone reservoirs in the coal measures. Our results also show that the kinetic generation processes of Ci5 and CO2 are asynchronous. There are two main stages of CO2 generation, one at the weak diagenetic stage and the other at the overmature stage, which are different from largescale multistage hydrocarbon gas generation. Therefore, we can understand the mechanism of tight gas charging by determining the filling time for a tight gas reservoir and the key period of CO2 genera tion. Further analysis and correlation studies of a specific region are of great significance for determining the mechanism and modeling gas charging in tight reservoirs. It should be noted that the formation of tight sandstone reservoirs is the combined result of complex organicinorganic and waterrockhydrocarbon interactions. The details of spatial and temporal distributions of the carbonate cement derived from the organic C02, which combines with metal ions (Ca/Mg/Fe) in the formation water, should be further investigated.