The purpose of this study is to investigate the characteristics of soot particles in C2H4/CO2/O2/N2 com- bustion at equivalence ratio of 3.0-5.0. As the oxidant is switched from conventional air to CO2/O2/N2 mixture, ...The purpose of this study is to investigate the characteristics of soot particles in C2H4/CO2/O2/N2 com- bustion at equivalence ratio of 3.0-5.0. As the oxidant is switched from conventional air to CO2/O2/N2 mixture, the key species C2H2, C3H3 responsible for formation of first aromatic ring, the apical aromatics and 4zring aromatics total production rate all decrease greatly. In addition, with CO2 mole fraction from 0.2 to 0.5 in the mixture, the soot particle number density, volume fraction, surface area density, which are three most important parameters to soot oarticle orooertv, are suooressed obviously. Furthermore, the increasing content of C02 in the oxidizer influences mostly H, OH radical concentrations by two reactins CO + OH == CO2+ H and H + O2===O+ OH, and the procluction rate ofvo reactions declined, which revealed that C02 in mixture has an inhibiting ef- fect on soot particle generation.展开更多
The methylotrophic yeast Pichia pastoris is a highly successful system for production of a variety of heterologous proteins due to its unique features/abilities for effective protein expression, and tremendous efforts...The methylotrophic yeast Pichia pastoris is a highly successful system for production of a variety of heterologous proteins due to its unique features/abilities for effective protein expression, and tremendous efforts have been made to increase heterologous protein productivity by P. pastoris in recent years. When new engineered yeast strains are constructed and are ready to use tot industrial protein production, process control and optimization techniques should be applied to improve the fermentation performance in the following aspects: (1) increase recombinant cell concentrations in fermentor to high density during growth phase; (2) effectively induce heterologous proteins by enhancing/stabilizing titers or concentrations of the proteins during induction phase; (3) decrease operation costs by relieving the working loads of heat-exchange and oxygen supply. This article reviews and discusses the key and commonly used techniques in heterologous protein production by P. pastoris, with the focus on optimizations of fermentation media and basic operation conditions, development of optimal glycerol feeding strategies for achieving high density cultivation of P. pastoris and effective heterologous protein induction methods by regulating specific growth rate, methanol concentration, temperatures, mixture ratio of multi-carbon substrates, etc. Metabolic analysis for recombinant protein production by P. pastoris is also introduced to interpret the mechanism of sub-optimal heterologous protein production and to explore further optimal expression methods.展开更多
The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logar...The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).展开更多
In molten phase metallurgical processes,mixing via gas injection has a vital role in obtaining a homogeneous product.The efficiency of mixing depends on operational variables such as gas flow rate and slag height as w...In molten phase metallurgical processes,mixing via gas injection has a vital role in obtaining a homogeneous product.The efficiency of mixing depends on operational variables such as gas flow rate and slag height as well as physical properties of the molten phases.A numerical simulation is conducted to study the above parameters in the flow behavior of a bottom-blown bath.The molten metal and the slag are modeled by water and oil,respectively.The numerical results,particularly the mixing time,are validated against experimental data.The results show that mixing time increases as the slag height increases and decreases as the density of the slag material increases.The mixing time decreases with an increase in the density of the primary phase;however,it increases as the surface tension between air and water increases.A case with properties close to a real molten metal is also modeled.The performance of the system is influenced by the momentum rather than the dissipative forces.Thus,the effect of the density of the molten phase on the mixing process is more pronounced compared to the effect of the surface tension between the air and the molten phase.展开更多
The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH...The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH value on the streaming potential (SP) of the membrane were investigated. The zeta potentials and surface charge densities of the membrane were estimated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory. The results show that the PVB membrane has a weak negative charge due to the specific adsorption of ions. Moreover, the streaming potential, the zeta potential and the surface charge density of the membrane depend strongly on the salt concentration and the type and valence of ions. The iso-electric point (IEP) of the PVB membrane is arotmd 3.0 in the monovalent media (NaC1 and KC1) and 3.5 in divalent electrolytes (CaCl2 and MgCl2). A few retentions were obtained for PVB membrane in low concentration solutions. This result verifies that the negative charged membrane surface can reject inorganic solutes by means of electrostatic repulsion effect even though the size of membrane pores is much larger than the size of salts.展开更多
We measured the concentrations of dimethylsulfide(DMS),acrylic acid(AA),and dimethylsulfoniopropionate(DMSP) during growth of three microalgae:Prorocentrum micans,Gephyrocapsa oceanica,and Platymonas subcordiformis.Th...We measured the concentrations of dimethylsulfide(DMS),acrylic acid(AA),and dimethylsulfoniopropionate(DMSP) during growth of three microalgae:Prorocentrum micans,Gephyrocapsa oceanica,and Platymonas subcordiformis.The DMSP,AA,and DMS concentrations in culture media varied significantly among algal growth stages,with the highest concentrations in the late stationary growth stage or the senescent stage.In the stationary growth stage,the average DMSP concentration per cell in P.micans(0.066 5 pmol/cell) was 1.3 times that in G.oceanica(0.049 5 pmol/cell) and 20.2 times that in P.subcordiformis(0.003 29 pmol/cell).The average concentrations of AA were0.044 6,0.026 9,and 0.003 05 pmol/cell in P.micans,G.oceanica,and P.subcordiformis,respectively,higher than the concentrations of DMS(0.272,0.497,and 0.086 2 fmol/cell,respectively).There were significant positive correlations between cell density and AA,DMSP,and DMS concentrations.The ratios of DMS/AA and AA/(DMSP+AA) in the three algae differed significantly over the growth cycle.In all three microalgae,the DMS/AA ratios were less than 25%during the growth period,suggesting that the enzymatic cleavage pathway,which generates DMS,was not the main DMSP degradation pathway.The changes in the DMS/AA ratio indicated that there was a higher rate of enzymatic breakdown of DMSP in the early growth period and a lower rate during senescence.In all three microalgae,the AA/(DMSP+AA) ratio(degradation ratio of DMSP) decreased during the exponential growth phase,and then increased.The variations in these ratios can approximately indicate the cleavage mechanism of DMSP at different stages of algal growth.展开更多
In the flotation process, bubble is a key factor in studying bubble-particle interaction and fine particle flo- tation. Knowledge on size distribution of bubbles in a flotation system is highly important. In this stud...In the flotation process, bubble is a key factor in studying bubble-particle interaction and fine particle flo- tation. Knowledge on size distribution of bubbles in a flotation system is highly important. In this study, bubble distributions in different reagent concentrations, electrolyte concentrations, cathode apertures, and current densities in electroflotation are determined using a high-speed camera. Average bubble sizes under different conditions are calculated using Image-Pro@ Plus (Media Cybernetics@, MD, USA) and SigmaScan@ Pro (Systat Software, CA, USA) software. Results indicate that the average sizes of bubbles, which were generated through 38, 50, 74, 150, 250, 420, and 1000 μm cathode apertures, are 20.2, 29.5, 44.6, 59.2, 68.7, 78.5, and 88.8 μm, respectively. The optimal current density in electroflotation is 20 A/m2. Reagent and electrolyte concentrations, current density, and cathode aperture are important factors in controlling bubble size and nucleation. These factors also contribute to the control of fine- Particle flotation.展开更多
We investigated the effect of CO2 enrichment and initial inoculum density on competition between Skeletonema costatum and Heterosigma akashiwo,two common algae seen in algal blooms.The initial inoculum density(0.2...We investigated the effect of CO2 enrichment and initial inoculum density on competition between Skeletonema costatum and Heterosigma akashiwo,two common algae seen in algal blooms.The initial inoculum density(0.2×104,0.4×104,0.8×104 cells/ml) had a significant effect on population growth and competition between H.akashiwo and S.costatum.The time required for population growth to reach the exponential growth phase and stationary phase decreased significantly as the initial density increased.When the two species were cultured together,S.costatum tended to outcompete H.akashiwo,especially when present at higher initial ratios.CO_2 enrichment(5 000μl/L CO_2) increased the maximum population density and carrying capacity of H.akashiwo but decreased these measures for S.costatum.Thus,CO_2 enrichment favored the growth of H.akashiwo over S.costatum.展开更多
Based on the model of the two calcium stores developed by Goldbeter, the influence of external magnetic field on the calcium concentration has been discussed. We believe that the cell membrane is a major site of inter...Based on the model of the two calcium stores developed by Goldbeter, the influence of external magnetic field on the calcium concentration has been discussed. We believe that the cell membrane is a major site of interaction for extremely-low-frequency (ELF) electromagnetic fields, and the permeability of ions can be changed with the changing electromagnetic fields. It is shown that magnetic field initiates intraeellular calcium oscillation with a threshold in flux density, and that the calcium oscillations do not occur if the density of magnetic field is below the threshold. The results of theoretical calculation are consistent with that of the experiment. The intracellular free calcium concentrations of different cells exposed to the same magnetic fields are different from each other. It is indicated that the different behaviors such as oscillation, rise and invariability of calcium concentration are associated with the sort of cells.展开更多
Based on the critical unstable of both crystal and magnetic structure of Gd-intermetallic compound near the competition of two strongly independent subsystem ("local 4f7" and "conduction electron concentration")...Based on the critical unstable of both crystal and magnetic structure of Gd-intermetallic compound near the competition of two strongly independent subsystem ("local 4f7" and "conduction electron concentration"), a new QPT (quantum point transition) is predicted by calculation of: (1) The band structure and density of state by density functional theory where a strong narrowing fluidity of fermions around EF with shifted to negative value "-0.8 eV "is observable in the Gd-intermetalliccompound system while in the Y-case, it is not dominated. An antiferromagnetic state on the fluidity of conduction band can be investigated; (2) The internal magnetic field due to short range exchange interaction Jij between the nearest neighbor of local magnetic moment of stable s-state of Gd (L = 0) through the mean field approximation and of Eigenvalue-Eigenfunction ~.(k) are calculated. While a strong negative value of Jy is predicted, the eigenvalue L(k) of the system shows a strong antiferromagnetic phase in the reciprocal lattice direction 〈010〉, 〈001〉 in the correlation length 3.38 ~A. Although the antiferromagnetic state at Rc 〈_ 3.38 °A is a puzzle but it is completely dominated at Rc = 9 °A after passing through the competition between ).λmin(O) and λmin(π) in the ranger of 3.2 °A 〈 Rc 〈 9 °A. Since both of the antiferromagnetic subsystems are sensitive to the predicted KF, the effect of decreasing of conduction electron is proposed to investigate, the change of the antiferromagnetic ordering state to the competition of ferromagnetic state (in direction 〈010〉) and antiferromagnetic state (in direction 〈001 〉 and 〈 100〉) resulted to paramagnetic state in the long range Rc = 9 °A.展开更多
Saline aquifers are chosen for geological storage of greenhouse gas CO_2 because of their storage potential.In almost all cases of practical interest,CO_2 is present on top of the liquid and CO_2 dissolution leads to ...Saline aquifers are chosen for geological storage of greenhouse gas CO_2 because of their storage potential.In almost all cases of practical interest,CO_2 is present on top of the liquid and CO_2 dissolution leads to a small increase in the density of the aqueous phase.This situation results in the creation of negative buoyancy force for downward density-driven natural convection and consequently enhances CO_2 sequestration.In order to study CO_2 injection at pore-level,an isothermal Lattice Boltzmann Model(LBM) with two distribution functions is adopted to simulate density-driven natural convection in porous media with irregular geometry obtained by image treatment.The present analysis showed that after the onset of natural convection instability,the brine with a high CO_2 concentration infringed into the underlying unaffected brine,in favor of the migration of CO_2 into the pore structure.With low Rayleigh numbers,the instantaneous mass flux and total dissolved CO_2 mass are very close to that derived from penetration theory(diffusion only),but the fluxes are significantly enhanced with high Ra number.The simulated results show that as the time increases,some chaotic and recirculation zones in the flow appear obviously,which promotes the renewal of interfacial liquid,and hence enhances dissolution of CO_2 into brine.This study is focused on the scale of a few pores,but shows implications in enhanced oil/gas recovery with CO_2 sequestration in aquifers.展开更多
The most critical disadvantages of the Zn-air flow battery system are corrosion of the zinc, which appears as a high self-discharge current density and a short cycle life due to the non-uniform, dendritic, zinc electr...The most critical disadvantages of the Zn-air flow battery system are corrosion of the zinc, which appears as a high self-discharge current density and a short cycle life due to the non-uniform, dendritic, zinc electrodeposition that can lead to internal short-circuit. In our efforts to find a dendrite-free Zn electrodeposition which can be utilized in the Zn-air flow battery, the surface morphology of the electrolytic Zn deposits on a polished polymer carbon composite anode in alkaline, additive-free solutions was studied. Experiments were carried out with 0.1 M, 0.2 M and 0.5 M zincate concentrations in 8 M KOH. The effects of different working conditions such as: elevated temperatures, different current densities and different flow velocities, on current efficiency and dendrite formation were investigated. Specially designed test flow-cell with a central transparent window was employed. The highest Coulombic efficiencies of 80%-93% were found for 0.5 M ZnO in 8 M KOH, at increased temperatures (50-70 ℃), current densities of up to 100 mA.cm2 and linear electrolyte flow velocities higher than 6.7 cm.s1.展开更多
Disturbances in the metabolism of lipoprotein profiles and oxidative stress in hemodialyzed (HD) and post-renal transplant (Tx) patients are proatherogenic, but elevated concentrations of plasma high-density lipop...Disturbances in the metabolism of lipoprotein profiles and oxidative stress in hemodialyzed (HD) and post-renal transplant (Tx) patients are proatherogenic, but elevated concentrations of plasma high-density lipoprotein (HDL) reduce the risk of cardiovascular disease. We investigated the concentrations of lipid, lipoprotein, HDL particle, oxidized low-density lipoprotein (ox-LDL) and anti-ox-LDL, and paraoxonase-1 (PON-1) activity in HD (n=33) and Tx (n=71) patients who were non-smokers without active inflammatory disease, liver disease, diabetes, or malignancy. HD patients had moderate hypertriglyceridemia, normocholesterolemia, low HDL-C, apolipoprotein A-I (apoA-I) and HDL particle concentrations as well as PON-1 activity, and increased ox-LDL and anti-ox-LDL levels. Tx patients had hypertriglyceridemia, hypercholesterolemia, moderately decreased HDL-C and HDL particle concentrations and PON-1 activity, and moderately increased ox-LDL and anti-ox-LDL levels as compared to the reference, but ox-LDL and anti-ox-LDL levels and PON-1 activity were more disturbed in HD patients. However, in both patient groups, lipid and lipoprotein ratios (total cholesterol (TC)/HDL-C, LDL-C/HDL-C, triglyceride (TG)/HDL-C, HDL-C/non-HDL-C, apoA-I/apoB, HDL-C/apoA-I, TG/HDL) were atherogenic. The Spearman's rank coefficient test showed that the concentration of ox-LDL correlated positively with HDL particle level (R=0.363, P=0.004), and negatively with TC (R=-0.306, P=0.012), LDL-C (R=-0.283, P=0.020), and non-HDL-C (R=-0.263, P=0.030) levels in Tx patients. Multiple stepwise forward regression analysis in Tx patients demonstrated that ox-LDL concentration, as an independent variable, was associated significantly positively with HDL particle level. The results indicated that ox-LDL and de- creased PON-1 activity in Tx patients may give rise to more mildly-oxidized HDLs, which are less stable, easily undergo metabolic remodeling, generate a greater number of smaller pre-13-HDL particles, and thus accelerate reverse cholesterol transport, which may be beneficial for Tx patients. Further studies are necessary to confirm this.展开更多
Generalized Poisson l3oltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negat...Generalized Poisson l3oltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negatively charged surface, the steric effect is not significant for surface charge density 〈 0.0032 C/dm2, while the ionic interaction is an important effect for electrolyte concentration 〉 0.15 tool/1 in bulk solution. We conclude that for most actual cases the original PB equation can give reliable result in describing inorganic cation adsorption.展开更多
The naphthalene decomposition in a corona radical shower discharge (CRS) was investigated, with attention paid to the influences of voltage and initial naphthalene density. The OH emission spectra were investigated so...The naphthalene decomposition in a corona radical shower discharge (CRS) was investigated, with attention paid to the influences of voltage and initial naphthalene density. The OH emission spectra were investigated so as to know the naphthalene decomposing process. The by-products were analyzed and a decomposing theory in discharge was proposed. The results showed that higher voltage and relative humidity were effective on decomposition. The initial concentration affected the decomposing efficiency of naphthalene. When the initial naphthalene density was 17 mg/m3, the decomposition rate was found to be 70% under 14 kV. The main by-products were carbon dioxide and water. However, a small amount of carbonic oxide, 1,2-ethanediol and acetaldehyde were found due to the incomplete oxidization.展开更多
The Beijing-Tianjin-Hebei (BTH) region is one of the most heavily polluted regions in China, with both high PM2.5 concentrations and a high population density. A quantitative source-receptor relationship can provide...The Beijing-Tianjin-Hebei (BTH) region is one of the most heavily polluted regions in China, with both high PM2.5 concentrations and a high population density. A quantitative source-receptor relationship can provide valuable insights that can inform effective emission control strategies. Both source appor- tionment (SA) and source sensitivity (SS) can provide such information from different perspectives. In this study, both methods are applied in northern China to identify the most significant emission cate- gories and source regions for PMz5 exposure in BTH in 2013. Despite their differences, both models show similar distribution patterns for population and simulated PM2.5 concentrations, resulting in overall high PM2.5 exposure values (approximately 110 Ixg/m3) and particularly high exposure values during the win- ter (approximately 200 ktg/m3). Both methods show that local emissions play a dominant role (70%), with some contribution from surrounding provinces (e.g., Shandong) via regional transport. The two methods also agree on the priority of local emission controls: both identify industrial, residential, and agricultural emissions as the top three categories that should be controlled locally. In addition, the effect of control- ling agricultural ammonia emissions is approximately doubled when the co-benefits of reducing nitrate are considered. The synthesis of SA and SS for addressing specific categories of emissions provides a quantitative basis for the development of emission control strategies and policies for controlling PM2.5 in China.展开更多
Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current pr...Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.展开更多
The effects of Mg doping(MgAl) and native N vacancy(VN) on the electronic structures and transport properties of Al N nanowire(Al NNW) were theoretically investigated by using density functional theory. Either the MgA...The effects of Mg doping(MgAl) and native N vacancy(VN) on the electronic structures and transport properties of Al N nanowire(Al NNW) were theoretically investigated by using density functional theory. Either the MgAl defect or the VN defect prefers to be formed on the Al NNW surfaces. Both MgAl and VN defects could increase the conductivity owing to introducing a defect band inside the band gap of Al N and split the Al N band gap into two subgaps. The defect concentration has little influence on the magnitude of the subgaps. The MgAl serves as a shallow acceptor rendering the nanowire a p-type conductor. The VN introduces a deep donor state enabling the nanowire an n-type conductor. The MgAl systems exhibit higher conductivity than the VN ones owing to the narrow subgaps of MgAl systems. The conductivity is roughly proportional to the defect concentration in the MgAl and VN defect systems. When the MgAl and VN coexist, the hole state of the MgAl defect and the electron state of the VN defect will compensate each other and their coupling state appears just above the valence-band maximum leading to a little decrease of the band gap compared with the pure Al NNW, which is unfavorable for the enhancing of the conductivity.展开更多
Porous silicon (PS) was fabricated by laser-induced etching (LIE) process. The objective of this study is to investigate the selected LIE parameters to control size and shape of nanostructures,which are considered imp...Porous silicon (PS) was fabricated by laser-induced etching (LIE) process. The objective of this study is to investigate the selected LIE parameters to control size and shape of nanostructures,which are considered important factors in semiconductor device applications. Photoluminescence output intensity becomes stronger due to the increase in the number of emitted photons on the porous surface. There is a dramatic increase in photoluminescence intensity due to the increase of porosity as a function of laser power density. The increase in electrolyte concentration is an important parameter to accelerate the dissolution reaction on the interface layer between the electrolyte solution and wafer surface. PS spectra displayed a stronger Raman intensity than crystalline bulk Si;also the PS spectrum was shifted and broadened as a function of LIE parameters.展开更多
基金* Supported by the National Natural Science Foundation of China (51176181), the National Basle Research of China (2012CB719704), and the National Key Technology Research and Development Program Of China (2011BAK07B01).
文摘The purpose of this study is to investigate the characteristics of soot particles in C2H4/CO2/O2/N2 com- bustion at equivalence ratio of 3.0-5.0. As the oxidant is switched from conventional air to CO2/O2/N2 mixture, the key species C2H2, C3H3 responsible for formation of first aromatic ring, the apical aromatics and 4zring aromatics total production rate all decrease greatly. In addition, with CO2 mole fraction from 0.2 to 0.5 in the mixture, the soot particle number density, volume fraction, surface area density, which are three most important parameters to soot oarticle orooertv, are suooressed obviously. Furthermore, the increasing content of C02 in the oxidizer influences mostly H, OH radical concentrations by two reactins CO + OH == CO2+ H and H + O2===O+ OH, and the procluction rate ofvo reactions declined, which revealed that C02 in mixture has an inhibiting ef- fect on soot particle generation.
基金Supported by the Key Agricultral Technology Program of Shanghai Science & Technology Committee(073919108)MajorState Basic Research Development Program of China(2007CB714303)
文摘The methylotrophic yeast Pichia pastoris is a highly successful system for production of a variety of heterologous proteins due to its unique features/abilities for effective protein expression, and tremendous efforts have been made to increase heterologous protein productivity by P. pastoris in recent years. When new engineered yeast strains are constructed and are ready to use tot industrial protein production, process control and optimization techniques should be applied to improve the fermentation performance in the following aspects: (1) increase recombinant cell concentrations in fermentor to high density during growth phase; (2) effectively induce heterologous proteins by enhancing/stabilizing titers or concentrations of the proteins during induction phase; (3) decrease operation costs by relieving the working loads of heat-exchange and oxygen supply. This article reviews and discusses the key and commonly used techniques in heterologous protein production by P. pastoris, with the focus on optimizations of fermentation media and basic operation conditions, development of optimal glycerol feeding strategies for achieving high density cultivation of P. pastoris and effective heterologous protein induction methods by regulating specific growth rate, methanol concentration, temperatures, mixture ratio of multi-carbon substrates, etc. Metabolic analysis for recombinant protein production by P. pastoris is also introduced to interpret the mechanism of sub-optimal heterologous protein production and to explore further optimal expression methods.
基金Project(11374094)supported by the National Natural Science Foundation of ChinaProject(2013HZX23)supported by Natural Science Foundation of Hunan University of Technology,ChinaProject(2015JJ3060)supported by Natural Science Foundation of Hunan Province of China
文摘The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).
文摘In molten phase metallurgical processes,mixing via gas injection has a vital role in obtaining a homogeneous product.The efficiency of mixing depends on operational variables such as gas flow rate and slag height as well as physical properties of the molten phases.A numerical simulation is conducted to study the above parameters in the flow behavior of a bottom-blown bath.The molten metal and the slag are modeled by water and oil,respectively.The numerical results,particularly the mixing time,are validated against experimental data.The results show that mixing time increases as the slag height increases and decreases as the density of the slag material increases.The mixing time decreases with an increase in the density of the primary phase;however,it increases as the surface tension between air and water increases.A case with properties close to a real molten metal is also modeled.The performance of the system is influenced by the momentum rather than the dissipative forces.Thus,the effect of the density of the molten phase on the mixing process is more pronounced compared to the effect of the surface tension between the air and the molten phase.
基金Project(21176264)supported by the National Natural Science Foundation of ChinaProject(11JJ2010)supported by the Hunan Provincial Natural Science Foundation of China+1 种基金Project(CL11096)supported by the Undergraduate Innovation Training Foundation of Central South University,ChinaProject(BL12053)supported by the Undergraduate Innovation Training Foundation of Hunan Province,China
文摘The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH value on the streaming potential (SP) of the membrane were investigated. The zeta potentials and surface charge densities of the membrane were estimated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory. The results show that the PVB membrane has a weak negative charge due to the specific adsorption of ions. Moreover, the streaming potential, the zeta potential and the surface charge density of the membrane depend strongly on the salt concentration and the type and valence of ions. The iso-electric point (IEP) of the PVB membrane is arotmd 3.0 in the monovalent media (NaC1 and KC1) and 3.5 in divalent electrolytes (CaCl2 and MgCl2). A few retentions were obtained for PVB membrane in low concentration solutions. This result verifies that the negative charged membrane surface can reject inorganic solutes by means of electrostatic repulsion effect even though the size of membrane pores is much larger than the size of salts.
基金Supported by the National Natural Science Foundation of China(No.41176062)
文摘We measured the concentrations of dimethylsulfide(DMS),acrylic acid(AA),and dimethylsulfoniopropionate(DMSP) during growth of three microalgae:Prorocentrum micans,Gephyrocapsa oceanica,and Platymonas subcordiformis.The DMSP,AA,and DMS concentrations in culture media varied significantly among algal growth stages,with the highest concentrations in the late stationary growth stage or the senescent stage.In the stationary growth stage,the average DMSP concentration per cell in P.micans(0.066 5 pmol/cell) was 1.3 times that in G.oceanica(0.049 5 pmol/cell) and 20.2 times that in P.subcordiformis(0.003 29 pmol/cell).The average concentrations of AA were0.044 6,0.026 9,and 0.003 05 pmol/cell in P.micans,G.oceanica,and P.subcordiformis,respectively,higher than the concentrations of DMS(0.272,0.497,and 0.086 2 fmol/cell,respectively).There were significant positive correlations between cell density and AA,DMSP,and DMS concentrations.The ratios of DMS/AA and AA/(DMSP+AA) in the three algae differed significantly over the growth cycle.In all three microalgae,the DMS/AA ratios were less than 25%during the growth period,suggesting that the enzymatic cleavage pathway,which generates DMS,was not the main DMSP degradation pathway.The changes in the DMS/AA ratio indicated that there was a higher rate of enzymatic breakdown of DMSP in the early growth period and a lower rate during senescence.In all three microalgae,the AA/(DMSP+AA) ratio(degradation ratio of DMSP) decreased during the exponential growth phase,and then increased.The variations in these ratios can approximately indicate the cleavage mechanism of DMSP at different stages of algal growth.
基金the National Natural Science Foundation of China (No.50774094)the Ministry of Science and Technology of China (No.2011BAB05B01) for financial support
文摘In the flotation process, bubble is a key factor in studying bubble-particle interaction and fine particle flo- tation. Knowledge on size distribution of bubbles in a flotation system is highly important. In this study, bubble distributions in different reagent concentrations, electrolyte concentrations, cathode apertures, and current densities in electroflotation are determined using a high-speed camera. Average bubble sizes under different conditions are calculated using Image-Pro@ Plus (Media Cybernetics@, MD, USA) and SigmaScan@ Pro (Systat Software, CA, USA) software. Results indicate that the average sizes of bubbles, which were generated through 38, 50, 74, 150, 250, 420, and 1000 μm cathode apertures, are 20.2, 29.5, 44.6, 59.2, 68.7, 78.5, and 88.8 μm, respectively. The optimal current density in electroflotation is 20 A/m2. Reagent and electrolyte concentrations, current density, and cathode aperture are important factors in controlling bubble size and nucleation. These factors also contribute to the control of fine- Particle flotation.
基金Supported by the Specialized Research Program for Marine Public Welfare Industry,SOA(No.200805066)
文摘We investigated the effect of CO2 enrichment and initial inoculum density on competition between Skeletonema costatum and Heterosigma akashiwo,two common algae seen in algal blooms.The initial inoculum density(0.2×104,0.4×104,0.8×104 cells/ml) had a significant effect on population growth and competition between H.akashiwo and S.costatum.The time required for population growth to reach the exponential growth phase and stationary phase decreased significantly as the initial density increased.When the two species were cultured together,S.costatum tended to outcompete H.akashiwo,especially when present at higher initial ratios.CO_2 enrichment(5 000μl/L CO_2) increased the maximum population density and carrying capacity of H.akashiwo but decreased these measures for S.costatum.Thus,CO_2 enrichment favored the growth of H.akashiwo over S.costatum.
基金supported by National Natural Science Foundation of Foundation under Grant No.C2007000026the Research Fond for the Doctoral Program of Higher Education under Grant No.20060080001
文摘Based on the model of the two calcium stores developed by Goldbeter, the influence of external magnetic field on the calcium concentration has been discussed. We believe that the cell membrane is a major site of interaction for extremely-low-frequency (ELF) electromagnetic fields, and the permeability of ions can be changed with the changing electromagnetic fields. It is shown that magnetic field initiates intraeellular calcium oscillation with a threshold in flux density, and that the calcium oscillations do not occur if the density of magnetic field is below the threshold. The results of theoretical calculation are consistent with that of the experiment. The intracellular free calcium concentrations of different cells exposed to the same magnetic fields are different from each other. It is indicated that the different behaviors such as oscillation, rise and invariability of calcium concentration are associated with the sort of cells.
文摘Based on the critical unstable of both crystal and magnetic structure of Gd-intermetallic compound near the competition of two strongly independent subsystem ("local 4f7" and "conduction electron concentration"), a new QPT (quantum point transition) is predicted by calculation of: (1) The band structure and density of state by density functional theory where a strong narrowing fluidity of fermions around EF with shifted to negative value "-0.8 eV "is observable in the Gd-intermetalliccompound system while in the Y-case, it is not dominated. An antiferromagnetic state on the fluidity of conduction band can be investigated; (2) The internal magnetic field due to short range exchange interaction Jij between the nearest neighbor of local magnetic moment of stable s-state of Gd (L = 0) through the mean field approximation and of Eigenvalue-Eigenfunction ~.(k) are calculated. While a strong negative value of Jy is predicted, the eigenvalue L(k) of the system shows a strong antiferromagnetic phase in the reciprocal lattice direction 〈010〉, 〈001〉 in the correlation length 3.38 ~A. Although the antiferromagnetic state at Rc 〈_ 3.38 °A is a puzzle but it is completely dominated at Rc = 9 °A after passing through the competition between ).λmin(O) and λmin(π) in the ranger of 3.2 °A 〈 Rc 〈 9 °A. Since both of the antiferromagnetic subsystems are sensitive to the predicted KF, the effect of decreasing of conduction electron is proposed to investigate, the change of the antiferromagnetic ordering state to the competition of ferromagnetic state (in direction 〈010〉) and antiferromagnetic state (in direction 〈001 〉 and 〈 100〉) resulted to paramagnetic state in the long range Rc = 9 °A.
文摘Saline aquifers are chosen for geological storage of greenhouse gas CO_2 because of their storage potential.In almost all cases of practical interest,CO_2 is present on top of the liquid and CO_2 dissolution leads to a small increase in the density of the aqueous phase.This situation results in the creation of negative buoyancy force for downward density-driven natural convection and consequently enhances CO_2 sequestration.In order to study CO_2 injection at pore-level,an isothermal Lattice Boltzmann Model(LBM) with two distribution functions is adopted to simulate density-driven natural convection in porous media with irregular geometry obtained by image treatment.The present analysis showed that after the onset of natural convection instability,the brine with a high CO_2 concentration infringed into the underlying unaffected brine,in favor of the migration of CO_2 into the pore structure.With low Rayleigh numbers,the instantaneous mass flux and total dissolved CO_2 mass are very close to that derived from penetration theory(diffusion only),but the fluxes are significantly enhanced with high Ra number.The simulated results show that as the time increases,some chaotic and recirculation zones in the flow appear obviously,which promotes the renewal of interfacial liquid,and hence enhances dissolution of CO_2 into brine.This study is focused on the scale of a few pores,but shows implications in enhanced oil/gas recovery with CO_2 sequestration in aquifers.
文摘The most critical disadvantages of the Zn-air flow battery system are corrosion of the zinc, which appears as a high self-discharge current density and a short cycle life due to the non-uniform, dendritic, zinc electrodeposition that can lead to internal short-circuit. In our efforts to find a dendrite-free Zn electrodeposition which can be utilized in the Zn-air flow battery, the surface morphology of the electrolytic Zn deposits on a polished polymer carbon composite anode in alkaline, additive-free solutions was studied. Experiments were carried out with 0.1 M, 0.2 M and 0.5 M zincate concentrations in 8 M KOH. The effects of different working conditions such as: elevated temperatures, different current densities and different flow velocities, on current efficiency and dendrite formation were investigated. Specially designed test flow-cell with a central transparent window was employed. The highest Coulombic efficiencies of 80%-93% were found for 0.5 M ZnO in 8 M KOH, at increased temperatures (50-70 ℃), current densities of up to 100 mA.cm2 and linear electrolyte flow velocities higher than 6.7 cm.s1.
基金Project(Nos.PW 55/09 and DS 41/10) supported by the Department of Laboratory Diagnostics,Medical University of Lublin,Poland
文摘Disturbances in the metabolism of lipoprotein profiles and oxidative stress in hemodialyzed (HD) and post-renal transplant (Tx) patients are proatherogenic, but elevated concentrations of plasma high-density lipoprotein (HDL) reduce the risk of cardiovascular disease. We investigated the concentrations of lipid, lipoprotein, HDL particle, oxidized low-density lipoprotein (ox-LDL) and anti-ox-LDL, and paraoxonase-1 (PON-1) activity in HD (n=33) and Tx (n=71) patients who were non-smokers without active inflammatory disease, liver disease, diabetes, or malignancy. HD patients had moderate hypertriglyceridemia, normocholesterolemia, low HDL-C, apolipoprotein A-I (apoA-I) and HDL particle concentrations as well as PON-1 activity, and increased ox-LDL and anti-ox-LDL levels. Tx patients had hypertriglyceridemia, hypercholesterolemia, moderately decreased HDL-C and HDL particle concentrations and PON-1 activity, and moderately increased ox-LDL and anti-ox-LDL levels as compared to the reference, but ox-LDL and anti-ox-LDL levels and PON-1 activity were more disturbed in HD patients. However, in both patient groups, lipid and lipoprotein ratios (total cholesterol (TC)/HDL-C, LDL-C/HDL-C, triglyceride (TG)/HDL-C, HDL-C/non-HDL-C, apoA-I/apoB, HDL-C/apoA-I, TG/HDL) were atherogenic. The Spearman's rank coefficient test showed that the concentration of ox-LDL correlated positively with HDL particle level (R=0.363, P=0.004), and negatively with TC (R=-0.306, P=0.012), LDL-C (R=-0.283, P=0.020), and non-HDL-C (R=-0.263, P=0.030) levels in Tx patients. Multiple stepwise forward regression analysis in Tx patients demonstrated that ox-LDL concentration, as an independent variable, was associated significantly positively with HDL particle level. The results indicated that ox-LDL and de- creased PON-1 activity in Tx patients may give rise to more mildly-oxidized HDLs, which are less stable, easily undergo metabolic remodeling, generate a greater number of smaller pre-13-HDL particles, and thus accelerate reverse cholesterol transport, which may be beneficial for Tx patients. Further studies are necessary to confirm this.
基金Supported by the National Natural Science Foundation of China under Grant Nos.40971146 and 40740420660the National Basic Research Program of China under Grant No.2010CB134511Scientific and Technological Innovation Foundation of Southwest University for Graduates under Grant No.kb2010013
文摘Generalized Poisson l3oltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negatively charged surface, the steric effect is not significant for surface charge density 〈 0.0032 C/dm2, while the ionic interaction is an important effect for electrolyte concentration 〉 0.15 tool/1 in bulk solution. We conclude that for most actual cases the original PB equation can give reliable result in describing inorganic cation adsorption.
基金Project supported by the National Basic Research Program (973) of China (No.2006CB200303)the Chinese-Slovak Scientific and Technological Cooperation Program (No.2010DFA92020)the China Postdoctoral Science Foundation (No.20100471698)
文摘The naphthalene decomposition in a corona radical shower discharge (CRS) was investigated, with attention paid to the influences of voltage and initial naphthalene density. The OH emission spectra were investigated so as to know the naphthalene decomposing process. The by-products were analyzed and a decomposing theory in discharge was proposed. The results showed that higher voltage and relative humidity were effective on decomposition. The initial concentration affected the decomposing efficiency of naphthalene. When the initial naphthalene density was 17 mg/m3, the decomposition rate was found to be 70% under 14 kV. The main by-products were carbon dioxide and water. However, a small amount of carbonic oxide, 1,2-ethanediol and acetaldehyde were found due to the incomplete oxidization.
基金supported by the National Natural Science Foundation of China(41625020 and 41571130035)the Ford Company, U.S.DOE grant #DE-SC0006695 at NCSU+1 种基金China's Special Scientific Research Funds for Environment Protection Commonweal Section(201409027)a DOE Office of Science User Facility supported by the Office of Science of the U.S.Department of Energy (DE-AC02-05CH11231)
文摘The Beijing-Tianjin-Hebei (BTH) region is one of the most heavily polluted regions in China, with both high PM2.5 concentrations and a high population density. A quantitative source-receptor relationship can provide valuable insights that can inform effective emission control strategies. Both source appor- tionment (SA) and source sensitivity (SS) can provide such information from different perspectives. In this study, both methods are applied in northern China to identify the most significant emission cate- gories and source regions for PMz5 exposure in BTH in 2013. Despite their differences, both models show similar distribution patterns for population and simulated PM2.5 concentrations, resulting in overall high PM2.5 exposure values (approximately 110 Ixg/m3) and particularly high exposure values during the win- ter (approximately 200 ktg/m3). Both methods show that local emissions play a dominant role (70%), with some contribution from surrounding provinces (e.g., Shandong) via regional transport. The two methods also agree on the priority of local emission controls: both identify industrial, residential, and agricultural emissions as the top three categories that should be controlled locally. In addition, the effect of control- ling agricultural ammonia emissions is approximately doubled when the co-benefits of reducing nitrate are considered. The synthesis of SA and SS for addressing specific categories of emissions provides a quantitative basis for the development of emission control strategies and policies for controlling PM2.5 in China.
基金supported by the National Natural Science Foundation of China(Grant No.11574306)the China International Science and Technology Cooperation Program(Grant No.2014DFG62280)the National High Technology Program of China(Grant No.2015AA03A101)
文摘Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.
基金supported by the National Natural Science Foundation of China(Grant Nos.51073048,51473042)the Leaders in Academe of Har-bin City of China(Grant No.2013RFXXJ024)the Science Foundation for Backup Leader of Leading Talent Echelon in Heilongjiang Province
文摘The effects of Mg doping(MgAl) and native N vacancy(VN) on the electronic structures and transport properties of Al N nanowire(Al NNW) were theoretically investigated by using density functional theory. Either the MgAl defect or the VN defect prefers to be formed on the Al NNW surfaces. Both MgAl and VN defects could increase the conductivity owing to introducing a defect band inside the band gap of Al N and split the Al N band gap into two subgaps. The defect concentration has little influence on the magnitude of the subgaps. The MgAl serves as a shallow acceptor rendering the nanowire a p-type conductor. The VN introduces a deep donor state enabling the nanowire an n-type conductor. The MgAl systems exhibit higher conductivity than the VN ones owing to the narrow subgaps of MgAl systems. The conductivity is roughly proportional to the defect concentration in the MgAl and VN defect systems. When the MgAl and VN coexist, the hole state of the MgAl defect and the electron state of the VN defect will compensate each other and their coupling state appears just above the valence-band maximum leading to a little decrease of the band gap compared with the pure Al NNW, which is unfavorable for the enhancing of the conductivity.
文摘Porous silicon (PS) was fabricated by laser-induced etching (LIE) process. The objective of this study is to investigate the selected LIE parameters to control size and shape of nanostructures,which are considered important factors in semiconductor device applications. Photoluminescence output intensity becomes stronger due to the increase in the number of emitted photons on the porous surface. There is a dramatic increase in photoluminescence intensity due to the increase of porosity as a function of laser power density. The increase in electrolyte concentration is an important parameter to accelerate the dissolution reaction on the interface layer between the electrolyte solution and wafer surface. PS spectra displayed a stronger Raman intensity than crystalline bulk Si;also the PS spectrum was shifted and broadened as a function of LIE parameters.