期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一类时间—空间分数随机动力学方程解的密度分析
1
作者 刘俊峰 《数学进展》 CSCD 北大核心 2022年第4期737-756,共20页
本文主要研究了一类由可乘高斯噪声驱动的时间—空间分数随机动力学方程,其中该高斯噪声关于时间变量是白的,关于空间变量是齐次的.利用Malliavin分析技巧,证明了此类方程解的一些密度性质:存在性、光滑性以及高斯型估计.
关键词 时间—空间分数随机动力学方程 Malliavin分析 密度光滑性 高斯密度估计
原文传递
Supersmooth density estimations over L^p risk by wavelets
2
作者 LI Rui LIU YouMing 《Science China Mathematics》 SCIE CSCD 2017年第10期1901-1922,共22页
This paper studies wavelet estimations for supersmooth density functions with additive noises. We first show lower bounds of Lprisk(1 p < ∞) with both moderately and severely ill-posed noises. Then a Shannon wavel... This paper studies wavelet estimations for supersmooth density functions with additive noises. We first show lower bounds of Lprisk(1 p < ∞) with both moderately and severely ill-posed noises. Then a Shannon wavelet estimator provides optimal or nearly-optimal estimations over Lprisks for p 2, and a nearly-optimal result for 1 < p < 2 under both noises. In the nearly-optimal cases, the ratios of upper and lower bounds are determined. When p = 1, we give a nearly-optimal estimation with moderately ill-posed noise by using the Meyer wavelet. Finally, the practical estimators are considered. Our results are motivated by the work of Pensky and Vidakovic(1999), Butucea and Tsybakov(2008), Comte et al.(2006), Lacour(2006) and Lounici and Nickl(2011). 展开更多
关键词 wavelet estimation supersmooth density additive noise OPTIMALITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部